Product Citations: 23

Chronic Obstructive Pulmonary Disease (COPD) is a heterogeneous lung disease influenced by epigenetic modifications, particularly RNA methylation. Emerging evidence also suggests that autophagy plays a crucial role in immune cell infiltration and is implicated in COPD progression. This study aimed to investigate key RNA methylation regulators and explore the roles of RNA methylation and autophagy in COPD pathogenesis. We analyzed tissue-based bulk RNA sequencing and single-cell RNA sequencing (scRNA-seq) datasets from COPD and non-COPD patients, sourced from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified between COPD and non-COPD samples, and protein-protein interaction networks were constructed. Univariate logistic regression identified shared genes between DEGs and RNA methylation gene sets. Functional enrichment analyses, including Gene Ontology (GO), gene set enrichment analysis (GSEA), and gene set variation analysis (GSVA), were performed. Weighted gene co-expression network analysis (WGCNA) and immune infiltration analysis were conducted. Integration with scRNA-seq data further elucidated changes in immune cell composition, and cell communication analysis assessed interactions between macrophages and other immune cells. AddModuleScore analysis quantified RNA methylation and autophagy effects. Finally, a COPD mouse model was used to validate the expression of critical RNA methylation genes (FTO and IGF2BP2) in lung macrophages via RT-qPCR and flow cytometry. As revealed, we identified 13 RNA methylation-related genes enriched in translation and methylation processes. GSEA and GSVA revealed significant enrichment of these genes in immune and autophagy pathways. WGCNA analysis pinpointed key hub genes linking RNA methylation and autophagy. Integrated scRNA-seq analysis demonstrated a marked reduction of macrophages in COPD, with FTO and IGF2BP2 emerging as critical RNA methylation regulators. Macrophages with elevated RNA methylation and autophagy scores had increased interactions with other immune cells. In COPD mouse models, decreased expression of FTO and IGF2BP2 in lung macrophages was validated. Taken together, this study highlights the significant roles of RNA methylation in relation to autophagy pathways in the context of COPD. We identified key RNA methylation-related hub genes, such as FTO and IGF2BP2, which were found to have decreased expression in COPD macrophages. These findings provide novel genetic insights into the epigenetic mechanisms of COPD and suggest potential avenues for developing diagnostic and therapeutic strategies.
© 2025. The Author(s).

  • FC/FACS
  • Mus musculus (House mouse)
  • Cardiovascular biology
  • Cell Biology
  • Genetics

Cryptococcosis, caused by fungi of the genus Cryptococcus, manifests in a broad range of clinical presentations, including severe pneumonia and disease of the central nervous system (CNS) and other tissues (bone and skin). Immune deficiency or development of overexuberant inflammatory responses can result in increased susceptibility or host damage, respectively, during fungal encounters. Leukotrienes help regulate inflammatory responses against fungal infections. Nevertheless, studies showed that Cryptococcus exploits host 5-lipoxygenase (5-LO), an enzyme central to the metabolism of arachidonic acid into leukotrienes, to facilitate transmigration across the brain-blood barrier. To investigate the impact of host 5-LO on the development of protective host immune responses and mortality during cryptococcosis, wild-type (C57BL/6) and 5-lipoxygenase-deficient (5-LO-/-) mice were given experimental pulmonary and systemic Cryptococcus sp., infections. Our results showed that 5-LO-/- mice exhibited reduced pathology and better disease outcomes (i.e., no mortality or signs associated with cryptococcal meningoencephalitis) following pulmonary infection with C. deneoformans, despite having detectable yeast in the brain tissues. In contrast, C57BL/6 mice exhibited classical signs associated with cryptococcal meningoencephalitis. Additionally, brain tissues of 5-LO-/- mice exhibited lower levels of cytokines (CCL2 and CCL3) clinically associated with Cryptococcus-related immune reconstitution inflammatory syndrome (C-IRIS). In a systemic mouse model of cryptococcosis, 5-LO-/- mice and those treated with a Federal Drug Administration (FDA)-approved 5-LO synthesis inhibitor, zileuton, displayed significantly reduced mortality compared to C57BL/6 infected mice. These results suggest that therapeutics designed to inhibit host 5-LO signaling could reduce disease pathology and mortality associated with cryptococcal meningoencephalitis.
Cryptococcosis is a mycosis with worldwide distribution and has a broad range of clinical manifestations, including diseases of the CNS. Globally, there is an estimated 179,000 cases of cryptococcal meningitis, resulting in approximately 112,000 fatalities per annum and 19% of AIDS-related deaths. Understanding how host immune responses are modulated during cryptococcosis is central to mitigating the morbidity and mortality associated with cryptococcosis. Leukotrienes (LTs) have been shown to modulate inflammatory responses during infection. In this study, we show that mice deficient in 5-lipoxygenase (5-LO), an enzyme central to the metabolism of arachidonic acid into leukotrienes, exhibit reduced pathology, disease, and neurological signs associated with cryptococcal meningitis. Additionally, mice given an experimental cryptococcal infection and subsequently treated with an FDA-approved 5-LO synthesis inhibitor exhibited significantly reduced mortality rates. These results suggest that therapeutics designed to inhibit host 5-LO activity could significantly reduce pathology and mortality rates associated with cryptococcal meningitis.

  • Mus musculus (House mouse)
  • Immunology and Microbiology

The increasing prevalence of multidrug-resistant Pseudomonas aeruginosa (PA) is a significant concern for chronic respiratory disease exacerbations. Host-directed drugs, such as flagellin, an agonist of toll-like receptor 5 (TLR5), have emerged as a promising solution. In this study, we evaluated the prophylactic intranasal administration of flagellin against a multidrug-resistant strain of PA (PAMDR) in mice and assessed the possible synergy with the antibiotic gentamicin (GNT). The results indicated that flagellin treatment before infection decreased bacterial load in the lungs, likely due to an increase in neutrophil recruitment, and reduced signs of inflammation, including proinflammatory cytokines. The combination of flagellin and GNT showed a synergistic effect, decreasing even more the bacterial load and increasing mice survival rates, in comparison to mice pre-treated only with flagellin. These findings suggest that preventive nasal administration of flagellin could restore the effect of GNT against MDR strains of PA, paving the way for the use of flagellin in vulnerable patients with chronic respiratory diseases.

  • Immunology and Microbiology

Influenza A viruses (IAV) are extremely common respiratory viruses for the acute exacerbation of chronic obstructive pulmonary disease (AECOPD), in which IAV infection may further evoke abnormal macrophage polarization, amplify cytokine storms. Melatonin exerts potential effects of anti-inflammation and anti-IAV infection, while its effects on IAV infection-induced AECOPD are poorly understood.
COPD mice models were established through cigarette smoke exposure for consecutive 24 weeks, evaluated by the detection of lung function. AECOPD mice models were established through the intratracheal atomization of influenza A/H3N2 stocks in COPD mice, and were injected intraperitoneally with melatonin (Mel). Then, The polarization of alveolar macrophages (AMs) was assayed by flow cytometry of bronchoalveolar lavage (BAL) cells. In vitro, the effects of melatonin on macrophage polarization were analyzed in IAV-infected Cigarette smoking extract (CSE)-stimulated Raw264.7 macrophages. Moreover, the roles of the melatonin receptors (MTs) in regulating macrophage polarization and apoptosis were determined using MTs antagonist luzindole.
The present results demonstrated that IAV/H3N2 infection deteriorated lung function (reduced FEV20,50/FVC), exacerbated lung damages in COPD mice with higher dual polarization of AMs. Melatonin therapy improved airflow limitation and lung damages of AECOPD mice by decreasing IAV nucleoprotein (IAV-NP) protein levels and the M1 polarization of pulmonary macrophages. Furthermore, in CSE-stimulated Raw264.7 cells, IAV infection further promoted the dual polarization of macrophages accompanied with decreased MT1 expression. Melatonin decreased STAT1 phosphorylation, the levels of M1 markers and IAV-NP via MTs reflected by the addition of luzindole. Recombinant IL-1β attenuated the inhibitory effects of melatonin on IAV infection and STAT1-driven M1 polarization, while its converting enzyme inhibitor VX765 potentiated the inhibitory effects of melatonin on them. Moreover, melatonin inhibited IAV infection-induced apoptosis by suppressing IL-1β/STAT1 signaling via MTs.
These findings suggested that melatonin inhibited IAV infection, improved lung function and lung damages of AECOPD via suppressing IL-1β/STAT1-driven macrophage M1 polarization and apoptosis in a MTs-dependent manner. Melatonin may be considered as a potential therapeutic agent for influenza virus infection-induced AECOPD.
© 2024. The Author(s).

  • Mus musculus (House mouse)
  • Immunology and Microbiology

Influenza virus decreases albumin uptake and megalin expression in alveolar epithelial cells.

In Frontiers in Immunology on 20 September 2023 by Alberro-Brage, A., Kryvenko, V., et al.

Acute respiratory distress syndrome (ARDS) is a common complication of influenza virus (IV) infection. During ARDS, alveolar protein concentrations often reach 40-90% of plasma levels, causing severe impairment of gas exchange and promoting deleterious alveolar remodeling. Protein clearance from the alveolar space is at least in part facilitated by the multi-ligand receptor megalin through clathrin-mediated endocytosis.
To investigate whether IV infection impairs alveolar protein clearance, we examined albumin uptake and megalin expression in MLE-12 cells and alveolar epithelial cells (AEC) from murine precision-cut lung slices (PCLS) and in vivo, under IV infection conditions by flow cytometry and western blot. Transcriptional levels from AEC and broncho-alveolar lavage (BAL) cells were analyzed in an in-vivo mouse model by RNAseq.
IV significantly downregulated albumin uptake, independently of activation of the TGF-β1/GSK3β axis that has been previously implicated in the regulation of megalin function. Decreased plasma membrane abundance, total protein levels, and mRNA expression of megalin were associated with this phenotype. In IV-infected mice, we identified a significant upregulation of matrix metalloproteinase (MMP)-14 in BAL fluid cells. Furthermore, the inhibition of this protease partially recovered total megalin levels and albumin uptake.
Our results suggest that the previously described MMP-driven shedding mechanisms are potentially involved in downregulation of megalin cell surface abundance and clearance of excess alveolar protein. As lower alveolar edema protein concentrations are associated with better outcomes in respiratory failure, our findings highlight the therapeutic potential of a timely MMP inhibition in the treatment of IV-induced ARDS.
Copyright © 2023 Alberro-Brage, Kryvenko, Malainou, Günther, Morty, Seeger, Herold, Samakovlis and Vadász.

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology
View this product on CiteAb