Product Citations: 4

Profiling Germinal Center-like B Cell Responses to Conjugate Vaccines Using Synthetic Immune Organoids.

In ACS Central Science on 26 April 2023 by Moeller, T. D., Shah, S. B., et al.

Glycoengineered bacteria have emerged as a cost-effective platform for rapid and controllable biosynthesis of designer conjugate vaccines. However, little is known about the engagement of such conjugates with naïve B cells to induce the formation of germinal centers (GC), a subanatomical microenvironment that converts naïve B cells into antibody-secreting plasma cells. Using a three-dimensional biomaterials-based B-cell follicular organoid system, we demonstrate that conjugates triggered robust expression of hallmark GC markers, B cell receptor clustering, intracellular signaling, and somatic hypermutation. These responses depended on the relative immunogenicity of the conjugate and correlated with the humoral response in vivo. The occurrence of these mechanisms was exploited for the discovery of high-affinity antibodies against components of the conjugate on a time scale that was significantly shorter than for typical animal immunization-based workflows. Collectively, these findings highlight the potential of synthetic organoids for rapidly predicting conjugate vaccine efficacy as well as expediting antigen-specific antibody discovery.
© 2023 The Authors. Published by American Chemical Society.

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology

Vaccines typically protect against (re)infections by generating pathogen-neutralising antibodies. However, as we age, antibody-secreting cell formation and vaccine-induced antibody titres are reduced. Antibody-secreting plasma cells differentiate from B cells either early post-vaccination through the extrafollicular response or from the germinal centre (GC) reaction, which generates long-lived antibody-secreting cells. As the formation of both the extrafollicular antibody response and the GC requires the interaction of multiple cell types, the impaired antibody response in ageing could be caused by B cell intrinsic or extrinsic factors, or a combination of the two. Here, we show that B cells from older people do not have intrinsic defects in their proliferation and differentiation into antibody-secreting cells in vitro compared to those from the younger donors. However, adoptive transfer of B cells from aged mice to young recipient mice showed that differentiation into extrafollicular plasma cells was favoured at the expense of B cells entering the GC during the early stages of GC formation. In contrast, by the peak of the GC response, GC B cells derived from the donor cells of aged mice had expanded to the same extent as those from the younger donors. This indicates that age-related intrinsic B cell changes delay the GC response but are not responsible for the impaired antibody-secreting response or smaller peak GC response in ageing. Collectively, this study shows that B cells from aged individuals are not intrinsically defective in responding to stimulation and becoming antibody-secreting cells, implicating B cell-extrinsic factors as the primary cause of age-associated impairment in the humoral immunity.
© 2022 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd.

  • Mus musculus (House mouse)
  • Cell Biology
  • Immunology and Microbiology

Essential requirement for polypyrimidine tract binding proteins 1 and 3 in the maturation and maintenance of mature B cells in mice.

In European Journal of Immunology on 1 September 2021 by Monzon-Casanova, E., Bates, K. J., et al.

The maturation of immature B cells and the survival of mature B cells is stringently controlled to maintain a diverse repertoire of antibody specificities while avoiding self-reactivity. At the molecular level this is regulated by signaling from membrane Ig and the BAFF-receptor that sustain a pro-survival program of gene expression. Whether and how posttranscriptional mechanisms contribute to B cell maturation and survival remains poorly understood. Here, we show that the polypyrimidine tract binding proteins (PTBP) PTBP1 and PTBP3 bind to a large and overlapping set of transcripts in B cells. Both PTBP1 and PTBP3 bind to introns and exons where they are predicted to regulate alternative splicing. Moreover, they also show high-density of binding to 3' untranslated regions suggesting they influence the transcriptome in diverse ways. We show that PTBP1 and PTBP3 are required in B cells beyond the immature cell stage to sustain transitional B cells and the B1, marginal zone and follicular B cell lineages. Therefore, PTBP1 and PTBP3 promote the maturation of quiescent B cells by regulating gene expression at the posttranscriptional level.
© 2021 The Authors. European Journal of Immunology published by Wiley-VCH GmbH.

  • Immunology and Microbiology

A booster dose enhances immunogenicity of the COVID-19 vaccine candidate ChAdOx1 nCoV-19 in aged mice.

In Med (New York, N.Y.) on 12 March 2021 by Silva-Cayetano, A., Foster, W. S., et al.

The spread of SARS-CoV-2 has caused a worldwide pandemic that has affected almost every aspect of human life. The development of an effective COVID-19 vaccine could limit the morbidity and mortality caused by infection and may enable the relaxation of social-distancing measures. Age is one of the most significant risk factors for poor health outcomes after SARS-CoV-2 infection; therefore, it is desirable that any new vaccine candidates elicit a robust immune response in older adults.
Here, we use in-depth immunophenotyping to characterize the innate and adaptive immune response induced upon intramuscular administration of the adenoviral vectored ChAdOx1 nCoV-19 (AZD-1222) COVID-19 vaccine candidate in mice.
A single vaccination generates spike-specific Th1 cells, Th1-like Foxp3+ regulatory T cells, polyfunctional spike-specific CD8+ T cells. and granzyme-B-producing CD8 effectors. Spike-specific IgG and IgM are generated from both the early extrafollicular antibody response and the T follicular helper cell-supported germinal center reaction, which is associated with the production of virus-neutralizing antibodies. A single dose of this vaccine generated a similar type of immune response in aged mice but of a reduced magnitude than in younger mice. We report that a second dose enhances the immune response to this vaccine in aged mice.
This study shows that ChAdOx1 nCoV-19 induces both cellular and humoral immunity in adult and aged mice and suggests a prime-boost strategy is a rational approach to enhance immunogenicity in older persons.
This study was supported by BBSRC, Lister institute of Preventative Medicine, EPSRC VaxHub, and Innovate UK.
© 2020 The Author(s).

  • Mus musculus (House mouse)
  • COVID-19
  • Immunology and Microbiology
View this product on CiteAb