Product Citations: 2

CEACAM-1 Induced CSF3-receptor Downregulation in Bone Marrow Associated With Refractory Neutropenia in Advanced Cirrhosis.

In Journal of Clinical and Translational Hepatology on 28 February 2022 by Bihari, C., Baweja, S., et al.

Cirrhosis patients exhibit cytopenia, and, at times refractory neutropenia to granulocyte colony-stimulating factor (G-CSF), which acts through the CSF3-receptor (CSF3R), and changes in CSF3R can affect the response. We conducted this study to assess the CSF3R status and its relevance in cirrhotic patients.
Cirrhotic patients (n=127) and controls (n=26) with clinically indicated bone marrow (BM) examination were studied. BM assessment was done by qRT-PCR and immunohistochemistry (IHC) for CSF3R. Circulating G-CSF, CSF3R, and carcinoembryonic antigen cell adhesion molecule-1 (CEACAM1) were measured. BM hematopoietic precursor cells and their alterations were examined by flow cytometry. The findings were validated in liver cirrhosis patients who received G-CSF for severe neutropenia.
The mean age was 48.6±13.4 years, and 80.3% were men. Circulatory CSF3R reduction was noted with the advancement of cirrhosis, and confirmed by qRT-PCR and IHC in BM. CSF3R decline was related to decreased hematopoietic stem cells (HSCs) and downregulation of CSF3R in the remaining HSCs. Cocultures confirmed that CEACAM1 led to CSF3R downregulation in BM cells by possible lysosomal degradation. Baseline low peripheral blood-(PB)-CSF3R also predisposed development of infections on follow-up. Decreased CSF3R was also associated with nonresponse to exogenous G-CSF treatment of neutropenia.
Advanced liver cirrhosis was associated with low CSF3R and high CEACAM1 levels in the BM and circulation, making patients prone to infection and inadequate response to exogenous G-CSF.
© 2022 Authors.

  • FC/FACS

Nerve growth factor enhances the therapeutic effect of mesenchymal stem cells on diabetic periodontitis.

In Experimental and Therapeutic Medicine on 1 September 2021 by Li, Y., Wang, S., et al.

Patients with diabetes frequently suffer from periodontitis, which progresses rapidly and is difficult to cure. Mesenchymal stem cell (MSC) transplantation may effectively treat periodontitis, but high glucose limits its therapeutic effect in diabetes. Nerve growth factor (NGF) has the functions of cell protection, anti-apoptosis and immune regulation, and may have potential application in diabetic periodontitis. In the present study, flow cytometry indicated that NGF inhibited MSC apoptosis induced by high glucose. Of note, high glucose promoted the transformation of MSCs into the proinflammatory type. NGF inhibited this transformation of MSCs under diabetic conditions and further decreased the proportion of T cells and monocytes/macrophages among lymphocytes. An animal model of diabetic periodontitis was constructed and MSC transplantation was demonstrated to reduce alveolar bone loss caused by diabetes. NGF enhanced the therapeutic effect of MSCs and maintained transplanted MSC survival in periodontal tissue of diabetic mice. Immunohistochemical analysis of periodontal tissues suggested that in the NGF group, infiltration of T cells and macrophages was reduced. Neurotrophic receptor tyrosine kinase 1 was indicated to have a key role in these effects of NGF. In conclusion, NGF may enhance the therapeutic effect of MSCs on diabetic periodontitis by protecting the cells and promoting the transformation of MSCs into the immunosuppressive type.
Copyright © 2020, Spandidos Publications.

  • FC/FACS
  • Mus musculus (House mouse)
  • Neuroscience
  • Stem Cells and Developmental Biology
View this product on CiteAb