Product Citations: 3

Nonproductive exposure of PBMCs to SARS-CoV-2 induces cell-intrinsic innate immune responses.

In Molecular Systems Biology on 1 August 2022 by Kazmierski, J., Friedmann, K., et al.

Cell-intrinsic responses mounted in PBMCs during mild and severe COVID-19 differ quantitatively and qualitatively. Whether they are triggered by signals emitted by productively infected cells of the respiratory tract or result from physical interaction with virus particles remains unclear. Here, we analyzed susceptibility and expression profiles of PBMCs from healthy donors upon ex vivo exposure to SARS-CoV and SARS-CoV-2. In line with the absence of detectable ACE2 receptor expression, human PBMCs were refractory to productive infection. RT-PCR experiments and single-cell RNA sequencing revealed JAK/STAT-dependent induction of interferon-stimulated genes (ISGs) but not proinflammatory cytokines. This SARS-CoV-2-specific response was most pronounced in monocytes. SARS-CoV-2-RNA-positive monocytes displayed a lower ISG signature as compared to bystander cells of the identical culture. This suggests a preferential invasion of cells with a low ISG baseline profile or delivery of a SARS-CoV-2-specific sensing antagonist upon efficient particle internalization. Together, nonproductive physical interaction of PBMCs with SARS-CoV-2- and, to a much lesser extent, SARS-CoV particles stimulate JAK/STAT-dependent, monocyte-accentuated innate immune responses that resemble those detected in vivo in patients with mild COVID-19.
© 2022 The Authors. Published under the terms of the CC BY 4.0 license.

  • FC/FACS
  • Homo sapiens (Human)
  • Biochemistry and Molecular biology
  • COVID-19
  • Immunology and Microbiology

Non-productive exposure of PBMCs to SARS-CoV-2 induces cell-intrinsic innate immunity responses

Preprint on BioRxiv : the Preprint Server for Biology on 16 February 2022 by Kazmierski, J., Friedmann, K., et al.

Cell-intrinsic responses mounted in vivo in PBMCs during mild and severe COVID-19 differ quantitatively and qualitatively. Whether they are triggered by signals emitted by productively infected cells of the respiratory tract or are, at least partially, resulting from physical interaction with virus particles, remains unclear. Here, we analyzed susceptibility and expression profiles of PBMCs from healthy donors upon ex vivo exposure to SARS-CoV and SARS-CoV-2. In line with the absence of detectable ACE2 receptor expression, human PBMCs were refractory to productive infection. Bulk and single cell RNA-sequencing revealed JAK/STAT-dependent induction of interferon-stimulated genes, but not pro-inflammatory cytokines. This SARS-CoV-2-specific response was most pronounced in monocytes. SARS-CoV-2-RNA-positive monocytes displayed a lower ISG signature as compared to bystander cells of the identical culture. This suggests a preferential invasion of cells with a low ISG base-line profile or delivery of a SARS-CoV-2-specific sensing antagonist upon efficient particle internalization. Together, non-productive physical interaction of PBMCs with SARS-CoV-2-but not SARS-CoV particles stimulates JAK/STAT-dependent, monocyte-accentuated innate immune responses that resemble those detected in vivo in patients with mild COVID-19.

  • COVID-19
  • Immunology and Microbiology

Myeloma-Secreted Galectin-1 Potently Interacts with CD304 on Monocytic Myeloid-Derived Suppressor Cells.

In Cancer Immunology Research on 1 May 2021 by Lim, J. Y., Kim, T. W., et al.

Progression of multiple myeloma is regulated by factors intrinsic to the clonal plasma cells (PC) and by the immune effector cells in the tumor microenvironment. In this study, we investigated the interaction between CD304 expression on myeloid-derived suppressor cells (MDSC) and galectin-1 from malignant PCs in the context of autologous stem cell transplantation (ASCT) for multiple myeloma. Using high-throughput screening, CD304 expression on circulating monocytic MDSCs (M-MDSC; CD14+HLA-DRlow/-) was compared before and after ASCT. There was a significantly higher M-MDSC expression of CD304 before ASCT and a clear correlation between circulating pre-ASCT M-MDSC frequency and serum galectin-1 concentration. Treatment of pre-ASCT M-MDSCs, but not post-ASCT M-MDSCs, with galectin-1 in vitro expanded the M-MDSC population and increased expression of CD304. High galectin-1 expression by malignant PCs was associated with poor clinical outcomes. M-MDSC development and expression of CD304 were differentially induced when healthy donor peripheral blood mononuclear cells were cultured with the human multiple myeloma cell lines RPMI-8226 and JJN3, which express high and low galectin-1, respectively. Inhibition of galectin-1 reduced M-MDSC proliferation induced by RPMI-8226 cells but not by JJN3 cells, and blockade of CD304 reduced M-MDSC migration induced by RPMI-8226 cells but not by JJN3 cells. In addition, blockade of CD304 reversed suppression of the in vitro cytotoxic effect of melphalan by pre-ASCT M-MDSCs. Our data demonstrate that multiple myeloma-derived galectin-1 could mediate the tumor-promoting effect of M-MDSCs through its interaction with CD304 on M-MDSCs and contribute to multiple myeloma progression after ASCT.See related Spotlight on p. 488.
©2021 American Association for Cancer Research.

  • FC/FACS
View this product on CiteAb