Product Citations: 2

Regulatory T cell can protect against severe forms of coronaviral infections attributable to host inflammatory responses. But its role in the pathogenesis of COVID-19 is still unclear. In this study, frequencies of total and multiple subsets of lymphocytes in peripheral blood of COVID-19 patients and discharged individuals were analyzed using a multicolor flow cytometry assay. Plasma concentration of IL-10 was measured using a microsphere-based immunoassay kit. Comparing to healthy controls, the frequencies of total lymphocytes and T cells decreased significantly in both acutely infected COVID-19 patients and discharged individuals. The frequencies of total lymphocytes correlated negatively with the frequencies of CD3- CD56+ NK cells. The frequencies of regulatory CD8+ CD25+ T cells correlated with CD4+ /CD8+ T cell ratios positively, while the frequencies of regulatory CD4+ CD25+ CD127- T cells correlated negatively with CD4+ /CD8+ T cell ratios. Ratios of CD4+ /CD8+ T cells increased significantly in patients beyond age of 45 years. And accordingly, the frequencies of regulatory CD8+ CD25+ T cells were also found significantly increased in these patients. Collectively, the results suggest that regulatory CD4+ and CD8+ T cells may play distinct roles in the pathogenesis of COVID-19. Moreover, the data indicate that NK cells might contribute to the COVID-19 associated lymphopenia.
©2020 Society for Leukocyte Biology.

  • COVID-19
  • Immunology and Microbiology

MicroRNAs (miRNAs) play important roles in the regulation of cellular stress responses. We previously uncovered 10 novel human miRNAs which are induced by X-ray irradiation in HeLa cells using Solexa deep sequencing. The most highly expressed new miRNA, miR-5094, was predicted to target STAT5b. This study wonders whether miR-5094 participates in cellular radiation response via STAT5b. Firstly, direct interaction between miRNA-5094 and the STAT5b 3'-UTR was confirmed by luciferase reporter assay. Then, the radiation responsive expression of miR-5094 and STAT5b were measured in HeLa and Jurkat cells, and the expressions of down-stream genes of STAT5b after ionizing radiation (IR) were detected in HeLa cells. At last, the effects of miR-5094 on survival fraction, cell proliferation, cell cycle arrest and apoptosis induced by IR were investigated in HeLa cells, Jurkat cells and human peripheral blood T cells. It was found that up-regulation of miR-5094 by radiation induction or miRNA mimic transfection suppressed expression of STAT5b, and consequently decreased the transcription of down-stream Igf-1 and Bcl-2. Additionally, over expression of miR-5094 resulted in proliferation suppression and knockdown of miR-5094 by miRNA inhibitor after irradiation partially reversed the proliferation suppression induced by miR-5094 in HeLa cells, Jurkat cells and CD4+ T cells. Collectively, our findings demonstrate that up-regulation of miR-5094 down-regulated the expression of STAT5b, thereby suppressing cell proliferation after X-ray irradiation.
© The author(s).

  • FC/FACS
  • Homo sapiens (Human)
  • Cancer Research
View this product on CiteAb