Product Citations: 4

The mechanistic target of rapamycin (mTOR) positively regulates multiple steps of the HIV-1 replication cycle. We previously reported that a 12-week supplementation of antiretroviral therapy (ART) with metformin, an indirect mTOR inhibitor used in type-2 diabetes treatment, reduced mTOR activation and HIV transcription in colon-infiltrating CD4+ T cells, together with systemic inflammation in nondiabetic people with HIV-1 (PWH). Herein, we investigated the antiviral mechanisms of metformin. In a viral outgrowth assay performed with CD4+ T cells from ART-treated PWH, and upon infection in vitro with replication-competent and VSV-G-pseudotyped HIV-1, metformin decreased virion release, but increased the frequency of productively infected CD4lowHIV-p24+ T cells. These observations coincided with increased BST2/tetherin (HIV release inhibitor) and Bcl-2 (pro-survival factor) expression, and improved recognition of productively infected T cells by HIV-1 envelope antibodies. Thus, metformin exerts pleiotropic effects on post-integration steps of the HIV-1 replication cycle and may be used to accelerate viral reservoir decay in ART-treated PWH.
© 2024 The Authors.

  • Immunology and Microbiology

Mechanical properties of tissues including their stiffness change throughout our lives, during both healthy development but also during chronic diseases like cancer. How changes to stiffness, occurring during cancer progression, impact leukocytes is unknown. To address this, myeloid phenotypes resulting from mono- and cancer co-cultures of primary murine and human myeloid cells on 2D and 3D hydrogels with varying stiffnesses were analyzed. On soft hydrogels, conventional DCs (cDCs) developed, whereas on stiff hydrogels plasmacytoid DCs (pDCs) developed. Soft substrates promoted T cell proliferation and activation, while phagocytosis was increased on stiffer substrates. Cell populations expressing macrophage markers CD14, Ly6C, and CD16 also increased on stiff hydrogels. In cancer co-cultures, CD86+ populations decreased on higher stiffnesses across four different cancer types. High stiffness also led to increased vascular endothelial growth factor A (VEGFA), matrix metalloproteinases (MMP) and CD206 expression; 'M2' markers expressed by tumor-associated macrophages (TAMs). Indeed, the majority of CD11c+ cells expressed CD206 across human cancer models. Targeting the PI3K/Akt pathway led to a decrease in CD206+ cells in murine cultures only, while human CD86+ cells increased. Increased stiffness in cancer could, thus, lead to the dysregulation of infiltrating myeloid cells and shift their phenotypes towards a M2-like TAM phenotype, thereby actively enabling tumor progression. Additionally, stiffness-dependent intracellular signaling appears extremely cell context-dependent, potentially contributing to the high failure rate of clinical trials.
Copyright © 2024 Guenther.

  • FC/FACS
  • Cancer Research
  • Immunology and Microbiology

Mechanical properties of tissues including their stiffness change throughout our lives, during both healthy development but also during chronic diseases like cancer (1-4). How changes to stiffness, occurring during cancer progression, impact leukocytes is unknown. To address this, myeloid phenotypes resulting from mono- and cancer co-cultures of primary murine and human myeloid cells on 2D and 3D hydrogels with varying stiffnesses were analyzed. On soft hydrogels, conventional DCs (cDCs) developed, whereas on stiff hydrogels plasmacytoid DCs (pDCs) developed. Cell populations expressing macrophage markers CD14, Ly6C, and CD16 also increased on stiff hydrogels. In cancer co-cultures, CD86 + populations decreased on higher stiffnesses across four different cancer types. High stiffness also led to increased vascular endothelial growth factor A (VEGFA), matrix metalloproteinases (MMP) and CD206 expression; ‘M2’ markers expressed by tumour-associated macrophages (TAMs) (5). Indeed, the majority of CD11c + cells expressed CD206 across human cancer models. Targeting the PI3K/Akt pathway led to a decrease in CD206 + cells in murine cultures only, while human CD86 + cells increased. Increased stiffness in cancer could, thus, lead to the dysregulation of infiltrating myeloid cells and shift their phenotypes towards a M2-like TAM phenotype, thereby actively enabling tumor progression. Additionally, stiffness-dependent signaling appears species-dependent, potentially contributing to the high failure rate of clinical trials (6).

  • Cancer Research
  • Immunology and Microbiology

IL-17A reprograms intestinal epithelial cells to facilitate HIV-1 replication and outgrowth in CD4+ T cells.

In IScience on 19 November 2021 by Wiche Salinas, T. R., Gosselin, A., et al.

The crosstalk between intestinal epithelial cells (IECs) and Th17-polarized CD4+ T cells is critical for mucosal homeostasis, with HIV-1 causing significant alterations in people living with HIV (PLWH) despite antiretroviral therapy (ART). In a model of IEC and T cell co-cultures, we investigated the effects of IL-17A, the Th17 hallmark cytokine, on IEC ability to promote de novo HIV infection and viral reservoir reactivation. Our results demonstrate that IL-17A acts in synergy with TNF to boost IEC production of CCL20, a Th17-attractant chemokine, and promote HIV trans-infection of CD4+ T cells and viral outgrowth from reservoir cells of ART-treated PLWH. Importantly, the Illumina RNA-sequencing revealed an IL-17A-mediated pro-inflammatory and pro-viral molecular signature, including a decreased expression of type I interferon (IFN-I)-induced HIV restriction factors. These findings point to the deleterious features of IL-17A and raise awareness for caution when designing therapies aimed at restoring the paucity of mucosal Th17 cells in ART-treated PLWH.
Crown Copyright © 2021.

  • Immunology and Microbiology
View this product on CiteAb