Product Citations: 9

Molecular control of PDPNhi macrophage subset induction by ADAP as a host defense in sepsis.

In JCI Insight on 4 February 2025 by Zhang, P., Wang, X., et al.

Induction of podoplanin (PDPN) expression is a critical response of macrophages to LPS stimulation or bacterial infection in sepsis, but how this key process of TLR4-stimulated PDPN upregulation is regulated and the effect of PDPN expression on macrophage function remain elusive. Here, we determined how this process is regulated in vitro and in vivo. PDPN failed to be upregulated in TLR4-stimulated macrophages deficient in adhesion and degranulation-promoting adapter protein (ADAP), which could be rescued by the reconstitution of ADAP. A distinct PDPNhi peritoneal macrophage (PM) subset, which exhibited an M2-like phenotype and enhanced phagocytic activity, was generated in WT but not in ADAP-deficient septic mice. The blockade of PDPNhi PMs mimicked the effect of ADAP deficiency, which exacerbated sepsis. Mechanistically, Bruton's tyrosine kinase-mediated (BTK-mediated) tyrosine phosphorylation of ADAP at Y571 worked together with mTOR to converge on STAT3 activation for the transactivation of the PDPN promoter. Moreover, agonist activation of STAT3 profoundly potentiated the PDPNhi PM subset generation and alleviated sepsis severity in mice. Together, our findings reveal a mechanism whereby ADAP resets macrophage function by controlling the TLR4-induced upregulation of PDPN as a host innate immune defense during sepsis.

  • Mus musculus (House mouse)
  • Immunology and Microbiology

Glycolytic enzyme PFKFB3 regulates sphingosine 1-phosphate receptor 1 in proangiogenic glomerular endothelial cells under diabetic condition.

In American Journal of Physiology - Cell Physiology on 1 November 2023 by Yu, B., Shen, K., et al.

Glomerular angiogenesis is a characteristic feature of diabetic nephropathy (DN). Enhanced glycolysis plays a crucial role in angiogenesis. The present study was designed to investigate the role of glycolysis in glomerular endothelial cells (GECs) in a mouse model of DN. Mouse renal cortex and isolated glomerular cells were collected for single-cell and RNA sequencing. Cultured GECs were exposed to high glucose in the presence (proangiogenic) and absence of a vascular sprouting regimen. MicroRNA-590-3p was delivered by lipofectamine in vivo and in vitro. In the present study, a subgroup of GECs with proangiogenic features was identified in diabetic kidneys by using sequencing analyses. In cultured proangiogenic GECs, high glucose increased glycolysis and phosphofructokinase/fructose bisphosphatase 3 (PFKFB3) protein expression, which were inhibited by overexpressing miRNA-590-3p. Mimics of miRNA-590-3p also increased receptor for sphingosine 1-phosphate (S1pR1) expression, an angiogenesis regulator, in proangiogenic GECs challenged with high glucose. Inhibition of PFKFB3 by pharmacological and genetic approaches upregulated S1pR1 protein in vitro. Mimics of miRNA-590-3p significantly reduced migration and angiogenic potential in proangiogenic GECs challenged with high glucose. Ten-week-old type 2 diabetic mice had elevated urinary albumin levels, reduced renal cortex miRNA-590-3p expression, and disarrangement of glomerular endothelial cell fenestration. Overexpressing miRNA-590-3p via perirenal adipose tissue injection restored endothelial cell fenestration and reduced urinary albumin levels in diabetic mice. Therefore, the present study identifies a subgroup of GECs with proangiogenic features in mice with DN. Local administration of miRNA-590-3p mimics reduces glycolytic rate and upregulates S1pR1 protein expression in proangiogenic GECs. The protective effects of miRNA-590-3p provide therapeutic potential in DN treatment.NEW & NOTEWORTHY Proangiogenetic glomerular endothelial cells (GECs) are activated in diabetic nephropathy. High glucose upregulates glycolytic enzyme phosphofructokinase/fructose bisphosphatase 3 (PFKFB3) in proangiogenetic cells. PFKFB3 protects the glomerular filtration barrier by targeting endothelial S1pR1. MiRNA-590-3p restores endothelial cell function and mitigates diabetic nephropathy.

  • Mus musculus (House mouse)
  • Endocrinology and Physiology

Peritoneal adhesions (PAs) are a serious complication of abdominal surgery and negatively affect the quality of life of millions of people worldwide. However, a clear molecular mechanism and a standard therapeutic strategy for PAs have not been established. Here, we developed a standardized method to mimic the pathological changes in PAs and found that sirtuin 3 (SIRT3) expression was severely decreased in adhesion tissues, which was consistent with our bioinformatics analysis and patient adhesion tissue analysis. Thus, we hypothesized that activating SIRT3 could alleviate postsurgical PAs. Sirt3-deficient (Sirt3-/-) mice exhibited many more PAs after standardized abdominal surgery. Furthermore, compared with wild-type (Sirt3+/+) mice, Sirt3-deficient (Sirt3-/-) mice showed more prominent reactive oxygen species (ROS) accumulation, increased levels of inflammatory factors, and exacerbated mitochondrial damage and fragmentation. In addition, we observed NLRP3 inflammasome activation in the adhesion tissues of Sirt3-/- but, not Sirt3+/+ mice. Furthermore, mesothelial cells sorted from Sirt3-/- mice exhibited impaired mitochondrial bioenergetics and redox homeostasis. Honokiol (HKL), a natural compound found in several species of the genus Magnolia, could activate SIRT3 in vitro. Then, we demonstrated that treatment with HKL could reduce oxidative stress and the levels of inflammatory factors and suppress NLRP3 activation in vivo, reducing the occurrence of postsurgical PAs. In vitro treatment with HKL also restored mitochondrial bioenergetics and promoted mesothelial cell viability under oxidative stress conditions. Taken together, our findings show that the rescue of SIRT3 by HKL may be a new therapeutic strategy to alleviate and block postsurgical PA formation.
© 2022. The Author(s).

  • FC/FACS
  • Mus musculus (House mouse)
  • Biochemistry and Molecular biology

Stem/progenitor cells, because of their self-renewal and multiple cell type differentiation abilities, have good potential in regenerative medicine. We previously reported a lung epithelial cell population that expressed the stem cell marker SSEA-1 was abundant in neonatal but scarce in adult mice. In the current study, neonatal and adult mouse-derived pulmonary SSEA-1+ cells were isolated for further characterization. The results showed that neonatal-derived pulmonary SSEA-1+ cells highly expressed lung development-associated genes and had enhanced organoid generation ability compared with the adult cells. Neonatal pulmonary SSEA-1+ cells generated airway-like and alveolar-like organoids, suggesting multilineage cell differentiation ability. Organoid generation of neonatal but not adult pulmonary SSEA-1+ cells was enhanced by fibroblast growth factor 7 (FGF 7). Furthermore, neonatal pulmonary SSEA-1+ cells colonized and developed in decellularized and injured lungs. These results suggest the potential of lung-derived neonatal-stage SSEA-1+ cells with enhanced stem/progenitor activity and shed light on future lung engineering applications.© 2022 The Author(s).

  • Mus musculus (House mouse)
  • Stem Cells and Developmental Biology

Aberrant lung lipids cause respiratory impairment in a Mecp2-deficient mouse model of Rett syndrome.

In Human Molecular Genetics on 1 November 2021 by Vashi, N., Ackerley, C., et al.

Severe respiratory impairment is a prominent feature of Rett syndrome, an X-linked disorder caused by mutations in methyl CpG-binding protein 2 (MECP2). Despite MECP2's ubiquitous expression, respiratory anomalies are attributed to neuronal dysfunction. Here, we show that neutral lipids accumulate in mouse Mecp2-mutant lungs, whereas surfactant phospholipids decrease. Conditional deletion of Mecp2 from lipid-producing alveolar epithelial 2 (AE2) cells causes aberrant lung lipids and respiratory symptoms, whereas deletion of Mecp2 from hindbrain neurons results in distinct respiratory abnormalities. Single-cell RNA sequencing of AE2 cells suggests lipid production and storage increase at the expense of phospholipid synthesis. Lipid production enzymes are confirmed as direct targets of MECP2-directed nuclear receptor co-repressor 1/2 transcriptional repression. Remarkably, lipid-lowering fluvastatin improves respiratory anomalies in Mecp2-mutant mice. These data implicate autonomous pulmonary loss of MECP2 in respiratory symptoms for the first time and have immediate impacts on patient care.
© The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  • FC/FACS
  • Genetics
View this product on CiteAb