Product Citations: 3

Role of proteoglycan synthesis genes in osteosarcoma stem cells.

In Frontiers in Oncology on 1 May 2024 by Osumi, R., Sugihara, K., et al.

Osteosarcoma stem cells (OSCs) contribute to the pathogenesis of osteosarcoma (OS), which is the most common malignant primary bone tumor. The significance and underlying mechanisms of action of proteoglycans (PGs) and glycosaminoglycans (GAGs) in OSC phenotypes and OS malignancy are largely unknown. This study aimed to investigate the role of PG/GAG biosynthesis and the corresponding candidate genes in OSCs and poor clinical outcomes in OS using scRNA-seq and bulk RNA-seq datasets of clinical OS specimens, accompanied by biological validation by in vitro genetic and pharmacological analyses. The expression of β-1,3-glucuronyltransferase 3 (B3GAT3), one of the genes responsible for the biosynthesis of the common core tetrasaccharide linker region of PGs, was significantly upregulated in both OSC populations and OS tissues and was associated with poor survival in patients with OS with high stem cell properties. Moreover, the genetic inactivation of B3GAT3 by RNA interference and pharmacological inhibition of PG biosynthesis abrogated the self-renewal potential of OSCs. Collectively, these findings suggest a pivotal role for B3GAT3 and PG/GAG biosynthesis in the regulation of OSC phenotypes and OS malignancy, thereby providing a potential target for OSC-directed therapy.
Copyright © 2024 Osumi, Sugihara, Yoshimoto, Tokumura, Tanaka and Hinoi.

  • Cancer Research
  • Stem Cells and Developmental Biology

LncRNA FEZF1-AS1 Modulates Cancer Stem Cell Properties of Human Gastric Cancer Through miR-363-3p/HMGA2.

In Cell Transplantation on 9 July 2020 by Hui, Y., Yang, Y., et al.

Gastric cancer (GC) is a leading cause of cancer-related death with poor prognosis. Growing evidence has shown that long noncoding ribonucleic acid (lncRNA) FEZ family zinc finger 1 antisense RNA 1(FEZF1-AS1), an "oncogene," regulates tumor progression and supports cancer stem cell. However, the tumorigenic mechanism of FEZF1-AS1 on gastric cancer stem cell (GCSC) is yet to be investigated. Here, we discovered that FEZF1-AS1 was upregulated in GC tissues and cell lines. Knockdown of FEZF1-AS1 inhibited sphere formation and decreased expression of stem factors and markers. Moreover, FEZF1-AS1 silence also suppressed cell proliferation, viability, invasion, and migration of GCSCs. MiR-363-3p is used as a target of FEZF1-AS1, because its expression was suppressed by FEZF1-AS1 in GCSCs. FEZF1-AS1 could sponge miR-363-3p and increased the expression of high-mobility group AT-hook 2 (HMGA2). The expression of FEZF1-AS1 and miR-363-3p, as well as that of miR-363-3p and HMGA2, was negatively correlated in GC tissues. Finally, FEZF1-AS1 contributed to promotion of GCSCs progression partially through inhibition of miR-363-3p. Subcutaneous xenotransplanted tumor model revealed that silence of FEZF1-AS1 suppressed in vivo tumorigenic ability of GSCS via downregulation of HMGA2. In general, our findings clarified the critical regulatory role of FEZF1-AS1/miR-363-3p/HMGA2 axis in GCSC progression, providing a potential therapeutic target for GC.

  • FC/FACS
  • Cancer Research
  • Stem Cells and Developmental Biology

GSK‑3 inhibitor CHIR99021 enriches glioma stem‑like cells.

In Oncology Reports on 1 May 2020 by Yang, Y., Wang, Q. Q., et al.

Glioblastoma (GBM) is the most prevalent and lethal primary intrinsic brain cancer. The disease is essentially incurable, with glioblastomas characterized by resistance to both chemotherapy and radiotherapy, as well as by rapid tumor progression, all of which are mainly ascribed to glioma stem‑like cells (GSLCs). In the present study, an improved model that is more similar to clinical GBM was constructed. Twenty clinical glioma samples were collected to obtain primary low‑grade tumor cells. The cells were either maintained in serum‑free medium as primary glioma‑based cells (PGBCs) or cultured in the same medium with CHIR99021 as GSLCs. Then, the molecular and ultrastructural differences between the two cell groups were determined. Furthermore, the proliferation and migration of the GSLCs were examined and the potential mechanisms were investigated. Finally, temozolomide resistance in vitro and in the mouse model was assessed to study the properties of the induced GSLCs. The primary low‑grade tumor cells extracted from surgical samples were enriched with GSLC properties, with high expression levels of CD133 and Nestin in 100 nM CHIR99021. The GSLCs exhibited high proliferation and migration. Furthermore, the expression of the PI3K/AKT signaling pathway and that of related genes and proteins were significantly enhanced by CHIR99021. The animal study also revealed high levels of STAT3, mTOR, NF‑κB, and VEGF in the GSLC‑transplanted mice. CHIR99021 could stably enhance GSLC properties in patient‑derived glioma samples. It may provide a useful model for further study, helping to understand the pathogenesis of therapeutic resistance and to screen drug candidates.

  • FC/FACS
  • Cancer Research
View this product on CiteAb