Product Citations: 4

CD8 positive T-cells decrease neurogenesis and induce anxiety-like behaviour following hepatitis B vaccination.

In Brain Communications on 10 October 2024 by Zhou, T., Gao, Y., et al.

Mounting evidence indicates the involvement of peripheral immunity in the regulation of brain function, influencing aspects such as neuronal development, emotion, and cognitive abilities. Previous studies from our laboratory have revealed that neonatal hepatitis B vaccination can downregulate hippocampal neurogenesis, synaptic plasticity and spatial learning memory. In the current post-epidemic era characterized by universal vaccination, understanding the impact of acquired immunity on neuronal function and neuropsychiatric disorders, along with exploring potential underlying mechanisms, becomes imperative. We employed hepatitis B vaccine-induced CD3 positive T cells in immunodeficient mice to investigate the key mechanisms through which T cell subsets modulate hippocampal neurogenesis and anxiety-like behaviours. Our data revealed that mice receiving hepatitis B vaccine-induced T cells exhibited heightened anxiety and decreased hippocampal cell proliferation compared to those receiving phosphate-buffered saline-T cells or wild-type mice. Importantly, these changes were predominantly mediated by infiltrated CD8+ T cells into the brain, rather than CD4+ T cells. Transcriptome profiling of CD8+ T cells unveiled that C-X-C motif chemokine receptor 6 positive (CXCR6+) CD8+ T cells were recruited into the brain through microglial and astrocyte-derived C-X-C motif chemokine ligand 16 (CXCL16). This recruitment process impaired neurogenesis and induced anxiety-like behaviour via tumour necrosis factor-α-dependent mechanisms. Our findings highlight the role of glial cell derived CXCL16 in mediating the recruitment of CXCR6+CD8+ T cell subsets into the brain. This mechanism represents a potential avenue for modulating hippocampal neurogenesis and emotion-related behaviours after hepatitis B vaccination.
© The Author(s) 2024. Published by Oxford University Press on behalf of the Guarantors of Brain.

  • Immunology and Microbiology
  • Neuroscience

Targeting CXCL16 and STAT1 augments immune checkpoint blockade therapy in triple-negative breast cancer.

In Nature Communications on 13 April 2023 by Palakurthi, B., Fross, S. R., et al.

Chemotherapy prior to immune checkpoint blockade (ICB) treatment appears to improve ICB efficacy but resistance to ICB remains a clinical challenge and is attributed to highly plastic myeloid cells associating with the tumor immune microenvironment (TIME). Here we show by CITE-seq single-cell transcriptomic and trajectory analyses that neoadjuvant low-dose metronomic chemotherapy (MCT) leads to a characteristic co-evolution of divergent myeloid cell subsets in female triple-negative breast cancer (TNBC). Specifically, we identify that the proportion of CXCL16 + myeloid cells increase and a high STAT1 regulon activity distinguishes Programmed Death Ligand 1 (PD-L1) expressing immature myeloid cells. Chemical inhibition of STAT1 signaling in MCT-primed breast cancer sensitizes TNBC to ICB treatment, which underscores the STAT1's role in modulating TIME. In summary, we leverage single-cell analyses to dissect the cellular dynamics in the tumor microenvironment (TME) following neoadjuvant chemotherapy and provide a pre-clinical rationale for modulating STAT1 in combination with anti-PD-1 for TNBC patients.
© 2023. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.

  • FC/FACS
  • Mus musculus (House mouse)
  • Cancer Research
  • Immunology and Microbiology

Maximizing the Anti-tumor Potential of Immune Checkpoint Blockade through Modulation of Myeloid-specific CXCL16 and STAT1 Signaling

Preprint on BioRxiv : the Preprint Server for Biology on 28 March 2022 by Palakurthi, B., Guldner, I., et al.

h4>ABSTRACT/h4> Sensitivity to immune checkpoint blockades (ICB) depends on the overall balance of immunogenic and immunosuppressive signals in the tumor immune microenvironment (TIME). Chemotherapy as an immunostimulatory strategy showed potential in improving ICB’s clinical efficacy. Yet, evolution of highly plastic tumor-associated myeloid cells hinders ICB’s potential to reach its full therapeutic potential. In this study, we leveraged single-cell transcriptomic and trajectory analyses to delineate TIME dynamics after chemotherapy priming. We found that metronomic chemotherapy (MCT) treatment led to an accelerated T cell exhaustion through CXCL16-mediated recruitment of peripheral immature myeloid cells and expansion of STAT1-driven PD-L1 expressing myeloid cells. Inhibiting STAT1 signaling in MCT-primed breast cancer relieved T cell exhaustion and significantly enhanced the efficacy of anti-PD-1 ICB treatment. Our study leveraged single-cell analyses to dissect the dynamics of breast cancer TIME and provides a pre-clinical rationale to translate the anti-STAT1 plus anti-PD-1 combinatorial immunotherapy regimen to maximize ICB’s efficacy. h4>Manuscript Summary/h4> Single-cell analyses on low dose chemotherapy primed breast tumor-associated immune cells demonstrates a parallel coexistence of immunogenic and immunosuppressive myeloid cell subsets. Modulating STAT1 signaling in the tumor microenvironment fine-tunes immunogenic and immunosuppressive balance and maximizes the anti-PD-1 immunotherapy efficacy in chemotherapy-primed breast cancer.

  • FC/FACS
  • Mus musculus (House mouse)
  • Cancer Research
  • Immunology and Microbiology

Resident memory T cells in tumor-distant tissues fortify against metastasis formation.

In Cell Reports on 11 May 2021 by Christian, L. S., Wang, L., et al.

As a critical machinery for rapid pathogen removal, resident memory T cells (TRMs) are locally generated after the initial encounter. However, their development accompanying tumorigenesis remains elusive. Using a murine breast cancer model, we show that TRMs develop in the tumor, the contralateral mammary mucosa, and the pre-metastatic lung. Single-cell RNA sequencing of TRMs reveals two phenotypically distinct populations representing their active versus quiescent phases. These TRMs in different tissue compartments share the same TCR clonotypes and transcriptomes with a subset of intratumoral effector/effector memory T cells (TEff/EMs), indicating their developmental ontogeny. Furthermore, CXCL16 is highly produced by tumor cells and CXCR6- TEff/EMs are the major subset preferentially egressing the tumor to form distant TRMs. Functionally, releasing CXCR6 retention in the primary tumor amplifies tumor-derived TRMs in the lung and leads to superior protection against metastases. This immunologic fortification suggests a potential strategy to prevent metastasis in clinical oncology.
Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Mus musculus (House mouse)
  • Cancer Research
  • Immunology and Microbiology
View this product on CiteAb