Product Citations: 3

Longitudinal analysis of peripheral immune cells in patients with multiple sclerosis treated with anti-CD20 therapy.

In Annals of Clinical and Translational Neurology on 1 October 2024 by Waede, M., Voss, L. F., et al.

Anti-CD20 therapy is a highly effective treatment for multiple sclerosis (MS). In this study, we investigated MS-related changes in peripheral blood mononuclear cell (PBMC) subsets compared to healthy controls and longitudinal changes related to the treatment.
Multicolor spectral flow cytometry analysis was performed on 78 samples to characterize disease- and treatment-related PBMC clusters. Blood samples from MS patients were collected at baseline and up to 8 months post-treatment, with three collection points after treatment initiation. Unsupervised clustering tools and manual gating were applied to identify subclusters of interest and quantify changes.
B cells were depleted from the periphery after anti-CD20 treatment as expected, and we observed an isolated acute, transitory drop in the proportion of natural killer (NK) and NKT cells among the main populations of PBMC (P = 0.03, P = 0.004). Major affected PBMC subpopulations were cytotoxic immune cells (NK, NKT, and CD8+ T cells), and we observed a higher proportion of cytotoxic cells with reduced brain-homing ability and a higher regulatory function as a long-term anti-CD20-related effect. Additionally, anti-CD20 therapy altered distributions of memory CD8+ T cells and reduced exhaustion markers in both CD4+ and CD8+ T cells.
The findings of this study elucidate phenotypic clusters of NK and CD8+ T cells, which have previously been underexplored in the context of anti-CD20 therapy. Phenotypic modifications towards a more regulatory and controlled phenotype suggest that these subpopulations may play a critical and previously unrecognized role in mediating the therapeutic efficacy of anti-CD20 treatments.
© 2024 The Author(s). Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.

  • Immunology and Microbiology

Few data are available about the durability of the response, the induction of neutralizing antibodies, and the cellular response upon the third dose of the anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine in hemato-oncological patients.
To investigate the antibody and cellular response to the BNT162b2 vaccine in patients with hematological malignancy.
We measured SARS-CoV-2 anti-spike antibodies, anti-Omicron neutralizing antibodies, and T-cell responses 1 month after the third dose of vaccine in 93 fragile patients with hematological malignancy (FHM), 51 fragile not oncological subjects (FNO) aged 80-92, and 47 employees of the hospital (healthcare workers, (HW), aged 23-66 years. Blood samples were collected at day 0 (T0), 21 (T1), 35 (T2), 84 (T3), 168 (T4), 351 (T pre-3D), and 381 (T post-3D) after the first dose of vaccine. Serum IgG antibodies against S1/S2 antigens of SARS-CoV-2 spike protein were measured at every time point. Neutralizing antibodies were measured at T2, T3 (anti-Alpha), T4 (anti-Delta), and T post-3D (anti-Omicron). T cell response was assessed at T post-3D.
An increase in anti-S1/S2 antigen antibodies compared to T0 was observed in the three groups at T post-3D. After the third vaccine dose, the median antibody level of FHM subjects was higher than after the second dose and above the putative protection threshold, although lower than in the other groups. The neutralizing activity of antibodies against the Omicron variant of the virus was tested at T2 and T post-3D. 42.3% of FHM, 80,0% of FNO, and 90,0% of HW had anti-Omicron neutralizing antibodies at T post-3D. To get more insight into the breadth of antibody responses, we analyzed neutralizing capacity against BA.4/BA.5, BF.7, BQ.1, XBB.1.5 since also for the Omicron variants, different mutations have been reported especially for the spike protein. The memory T-cell response was lower in FHM than in FNO and HW cohorts. Data on breakthrough infections and deaths suggested that the positivity threshold of the test is protective after the third dose of the vaccine in all cohorts.
FHM have a relevant response to the BNT162b2 vaccine, with increasing antibody levels after the third dose coupled with, although low, a T-cell response. FHM need repeated vaccine doses to attain a protective immunological response.
Copyright © 2024 Laquintana, Mottini, Marchesi, Marcozzi, Terrenato, Sperandio, de Latouliere, Carrieri, Pimpinelli, Pontone, Pellini, Campo, Conti, Accetta, Mandoj, Petrone, Di Bella, Vujovic, Morrone, Compagnone, Principato, Pinto, Papa, Falcucci, La Malfa, Pallocca, De Marco, Piaggio, Ciliberto, Mengarelli and di Martino.

  • FC/FACS
  • COVID-19
  • Immunology and Microbiology

EZH1 repression generates mature iPSC-derived CAR T cells with enhanced antitumor activity.

In Cell Stem Cell on 4 August 2022 by Jing, R., Scarfò, I., et al.

Human induced pluripotent stem cells (iPSCs) provide a potentially unlimited resource for cell therapies, but the derivation of mature cell types remains challenging. The histone methyltransferase EZH1 is a negative regulator of lymphoid potential during embryonic hematopoiesis. Here, we demonstrate that EZH1 repression facilitates in vitro differentiation and maturation of T cells from iPSCs. Coupling a stroma-free T cell differentiation system with EZH1-knockdown-mediated epigenetic reprogramming, we generated iPSC-derived T cells, termed EZ-T cells, which display a highly diverse T cell receptor (TCR) repertoire and mature molecular signatures similar to those of TCRαβ T cells from peripheral blood. Upon activation, EZ-T cells give rise to effector and memory T cell subsets. When transduced with chimeric antigen receptors (CARs), EZ-T cells exhibit potent antitumor activities in vitro and in xenograft models. Epigenetic remodeling via EZH1 repression allows efficient production of developmentally mature T cells from iPSCs for applications in adoptive cell therapy.
Copyright © 2022 Elsevier Inc. All rights reserved.

  • Immunology and Microbiology
  • Stem Cells and Developmental Biology
View this product on CiteAb