Product Citations: 2

Heat shock protein 90α reduces CD8+ T cell exhaustion in acute lung injury induced by lipopolysaccharide.

In Cell Death Discovery on 13 June 2024 by Yan, L., Chen, Y., et al.

CD8+ T-cell exhaustion is a promising prognostic indicator of sepsis-induced acute respiratory distress syndrome (ARDS). Patients with sepsis-related ARDS had reduced levels of HSP90AA1. However, whether the changes in CD8+ T cells were related to HSP90α, encoded by the HSP90AA1 gene, was unclear. This study aimed to examine the regulatory mechanism of HSP90α and its impact on CD8+ T-cell exhaustion in lipopolysaccharide (LPS)-induced acute lung injury (ALI). In this study, by conducting a mouse model of ALI, we found that one week after LPS-induced ALI, CD8+ T cells showed exhaustion characteristics. At this time, proliferation and cytokine release in CD8+ T cells were reduced. The inhibitory costimulatory factors PD-1 and Tim-3, on the other hand, were enhanced. Meanwhile, the expression of HSP90α and STAT1 decreased significantly. The in vitro studies showed that HSP90α stimulation or inhibition affected the CD8+ T-cell exhaustion phenotype. Interference with STAT1 reduced the expression of HSP90α and impaired its regulation of CD8+ T cells. The Co-Immunoprecipitation results indicated that HSP90α can directly or indirectly bind to TOX to regulate TOX expression and downstream signal transduction. In summary, by inhibiting TOX-mediated exhaustion signaling pathways, HSP90α inhibited CD8+ T-cell exhaustion in ALI. The participation of STAT1 in the regulation of HSP90α was required.
© 2024. The Author(s).

  • Mus musculus (House mouse)
  • Immunology and Microbiology

DNA based neoepitope vaccination induces tumor control in syngeneic mouse models.

In NPJ Vaccines on 27 May 2023 by Viborg, N., Pavlidis, M. A., et al.

Recent findings have positioned tumor mutation-derived neoepitopes as attractive targets for cancer immunotherapy. Cancer vaccines that deliver neoepitopes via various vaccine formulations have demonstrated promising preliminary results in patients and animal models. In the presented work, we assessed the ability of plasmid DNA to confer neoepitope immunogenicity and anti-tumor effect in two murine syngeneic cancer models. We demonstrated that neoepitope DNA vaccination led to anti-tumor immunity in the CT26 and B16F10 tumor models, with the long-lasting presence of neoepitope-specific T-cell responses in blood, spleen, and tumors after immunization. We further observed that engagement of both the CD4+ and CD8+ T cell compartments was essential to hamper tumor growth. Additionally, combination therapy with immune checkpoint inhibition provided an additive effect, superior to either monotherapy. DNA vaccination offers a versatile platform that allows the encoding of multiple neoepitopes in a single formulation and is thus a feasible strategy for personalized immunotherapy via neoepitope vaccination.
© 2023. The Author(s).

  • FC/FACS
  • Mus musculus (House mouse)
  • Cancer Research
  • Genetics
View this product on CiteAb