Product Citations: 4

Alveolar epithelial and vascular CXCR2 mediates transcytosis of CXCL1 in inflamed lungs.

In Nature Communications on 24 May 2025 by Thomas, K., Rossaint, J., et al.

Pulmonary infections are characterized by neutrophil recruitment into the lung driven by chemokine ligands of CXCR2, which is expressed on neutrophils, but also present in non-hematopoietic lung cells, in which its role remains unclear. We hypothesize that CXCR2 in epithelial and endothelial cells contributes to neutrophil recruitment into the lung by modifying the availability of its cognate chemokines in lung alveoli. Using conditional endothelial and epithelial CXCR2 knockout mice, we demonstrate that selective CXCR2 deletion in either compartment impairs neutrophil recruitment into the lung during bacterial pneumonia and reduces bacterial clearance. We show that CXCR2 ablation in epithelial and endothelial cells compromises respective trans-epithelial and trans-endothelial transcytosis of alveolar CXCL1. Mechanistically, CXCR2-mediated CXCL1 endothelial and epithelial cell transcytosis requires the function of Bruton's tyrosine kinase in these cells. In conclusion, CXCR2 plays an important role in alveolar epithelial and endothelial cells, where it mediates cognate chemokine transcytosis, thus actively supporting their activities in neutrophil recruitment to the infected lungs.
© 2025. The Author(s).

CellSexID: Sex-Based Computational Tracking of Cellular Origins in Chimeric Models

Preprint on BioRxiv : the Preprint Server for Biology on 5 December 2024 by Tai, H., Li, Q., et al.

Cell tracking in chimeric models is essential yet challenging, particularly in developmental biology, regenerative medicine, and transplantation studies. Existing methods, such as fluorescent labeling and genetic barcoding, are technically demanding, costly, and often impractical for dynamic, heterogeneous tissues. To address these limitations, we propose a computational framework that leverages sex as a surrogate marker for cell tracking. Our approach uses a machine learning model trained on single-cell transcriptomic data to predict cell sex with high accuracy, enabling clear distinction between donor (male) and recipient (female) cells in sex-mismatched chimeric models. The model identifies specific genes critical for sex prediction and has been validated using public datasets and experimental flow sorting, confirming the biological relevance of the identified cell populations. Applied to skeletal muscle macrophages, our method revealed distinct transcriptional profiles associated with cellular origins. This pipeline offers a robust, cost-effective solution for cell tracking in chimeric models, advancing research in regenerative medicine and immunology by providing precise insights into cellular origins and therapeutic outcomes.

  • FC/FACS
  • Mus musculus (House mouse)

The diaphragm is a unique skeletal muscle due to its continuous activation pattern during the act of breathing. The ontogeny of macrophages, pivotal cells for skeletal muscle maintenance and regeneration, is primarily based on two distinct origins: postnatal bone marrow-derived monocytes and prenatal embryonic progenitors. Here we employed chimeric mice to study the dynamics of these two macrophage populations under different conditions. Traditional chimeric mice generated through whole body irradiation showed virtually complete elimination of the original tissue-resident macrophage pool. We then developed a novel method which employs lead shielding to protect the diaphragm tissue niche from irradiation. This allowed us to determine that up to almost half of tissue-resident macrophages in the diaphragm can be maintained independently from bone marrow-derived monocytes under steady-state conditions. These findings were confirmed by long-term (5 months) parabiosis experiments. Acute diaphragm injury shifted the macrophage balance toward an overwhelming predominance of bone marrow (monocyte)-derived macrophages. However, there was a remarkable reversion to the pre-injury ontological landscape after diaphragm muscle recovery. This diaphragm shielding method permits analysis of the dynamics of macrophage origin and corresponding function under different physiological and pathological conditions. It may be especially useful for studying diseases which are characterized by acute or chronic injury of the diaphragm and accompanying inflammation.
© 2024. The Author(s).

  • Immunology and Microbiology

Mitochondrial complex I activity in microglia sustains neuroinflammation.

In Nature on 1 April 2024 by Peruzzotti-Jametti, L., Willis, C. M., et al.

Sustained smouldering, or low-grade activation, of myeloid cells is a common hallmark of several chronic neurological diseases, including multiple sclerosis1. Distinct metabolic and mitochondrial features guide the activation and the diverse functional states of myeloid cells2. However, how these metabolic features act to perpetuate inflammation of the central nervous system is unclear. Here, using a multiomics approach, we identify a molecular signature that sustains the activation of microglia through mitochondrial complex I activity driving reverse electron transport and the production of reactive oxygen species. Mechanistically, blocking complex I in pro-inflammatory microglia protects the central nervous system against neurotoxic damage and improves functional outcomes in an animal disease model in vivo. Complex I activity in microglia is a potential therapeutic target to foster neuroprotection in chronic inflammatory disorders of the central nervous system3.
© 2024. The Author(s).

  • Cell Biology
  • Neuroscience
View this product on CiteAb