Product Citations: 7

The metastasis of human osteosarcoma (OS) shows a difficult‑to‑treat clinical scenario and results in decreased quality of life and diminished survival rates. Finding or developing novel treatments to improve the life quality of patients is urgent. Bisdemethoxycurcumin (BDMC), a natural product, was obtained from the rhizome of turmeric (Curcuma longa) and exerts antitumor activities in numerous human cancer cell lines. At present, there is no study showing BDMC effects on OS cell migration and invasion. In the present study, the effects of BDMC on cell migration and invasion of OS U‑2 OS cells were investigated in vitro. Cell viability and proliferation were measured by flow cytometric and MTT assays, respectively. Cell motility, MMP‑2 and ‑9 activity, and cell migration and invasion were assayed by scratch wound healing, gelatin zymography, and Transwell chamber assays, respectively. The protein expression levels were measured by western blotting. BDMC at 20 and 40 µM significantly reduced total cell viability, and BDMC at 5 and 10 µM significantly inhibited cell motility in U‑2 OS cells. BDMC significantly suppressed the activities of MMP‑2 and MMP‑9 in U‑2 OS cells. BDMC suppressed cell invasion and migration after 24 h treatment in U‑2 OS cells, and these effects were in a dose‑dependently manner. Results from western blotting indicated that BDMC significantly decreased the protein expression levels of PI3K/Akt/NF‑κB, PI3K/Akt/GSK3β, and MAPK pathway in U‑2 OS cells. Furthermore, BDMC inhibited uPA, MMP‑2, MMP‑9, MMP‑13, N‑cadherin, VE‑cadherin, and vimentin but increased E‑cadherin in U‑2 OS cells. Based on these observations, it was suggested that BDMC may be a potential candidate against migration and invasion of human OS cells in the future.

  • Homo sapiens (Human)
  • Cancer Research

Tetrandrine (TET) exhibits biological activities, including anticancer activity. In Chinese medicine, TET has been used to treat hypertensive and arrhythmic conditions and has been demonstrated to induce cytotoxic effects on human cancer cell lines. However, to the best of the author's knowledge, no previous studies have revealed that TET affects cell metastasis in SW620 human colon cancer cells. The present study demonstrated that TET decreased the cell number and inhibited cell adhesion and mobility of SW620 cells. Furthermore, a wound healing assay was performed to demonstrate that TET suppressed cell movement, and Transwell chamber assays were used to reveal that TET suppressed the cell migration and invasion of SW620 cells. Western blotting demonstrated that TET significantly reduced protein expression levels of SOS Ras/Rac guanine nucleotide exchange factor 1, phosphatidylinositol 3-kinase, growth factor receptor bound protein 2, phosphorylated (p)-c Jun N-terminal kinase 1/2, p-p38, p38, 14-3-3, Rho A, β-catenin, nuclear factor-κB p65, signal transducer and activator of transcription-1 and cyclooxygenase-2, in comparison with untreated SW620 cells. Overall, the results of the present study suggested that TET may be used as a novel anti-metastasis agent for the treatment of human colon cancer in the future.

  • WB
  • Homo sapiens (Human)
  • Cancer Research

AKT Hyperactivation and the Potential of AKT-Targeted Therapy in Diffuse Large B-Cell Lymphoma.

In The American Journal of Pathology on 1 August 2017 by Wang, J., Xu-Monette, Z. Y., et al.

AKT signaling is important for proliferation and survival of tumor cells. The clinical significance of AKT activation in diffuse large B-cell lymphoma (DLBCL) is not well analyzed. Here, we assessed expression of phosphorylated AKT (p-AKT) in 522 DLBCL patients. We found that high levels of p-AKT nuclear expression, observed in 24.3% of the study cohort, were associated with significantly worse progression-free survival and Myc and Bcl-2 overexpression. However, multivariate analysis indicated that AKT hyperactivation was not an independent factor. miRNA profiling analysis demonstrated that 63 miRNAs directly or indirectly related to the phosphatidylinositol 3-kinase/AKT/mechanistic target of rapamycin pathway were differentially expressed between DLBCLs with high and low p-AKT nuclear expression. We further targeted AKT signaling using a highly selective AKT inhibitor MK-2206 in 26 representative DLBCL cell lines and delineated signaling alterations using a reverse-phase protein array. MK-2206 treatment inhibited lymphoma cell viability, and MK-2206 sensitivity correlated with AKT activation status in DLBCL cells. On MK-2206 treatment, p-AKT levels and downstream targets of AKT signaling were significantly decreased, likely because of the decreased feedback repression; Rictor and phosphatidylinositol 3-kinase expression and other compensatory pathways were also induced. This study demonstrates the clinical and therapeutic implications of AKT hyperactivation in DLBCL and suggests that AKT inhibitors need to be combined with other targeted agents for DLBCL to achieve optimal clinical efficacy.
Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  • Homo sapiens (Human)
  • Cancer Research
  • Immunology and Microbiology
  • Pathology

Post-transplant lymphoproliferative disorders (PTLD) are a major problem in transplant medicine. So far, the insights into pathogenesis and potentially druggable pathways in PTLD remain scarce. We investigated a cohort of PTLD patients, consisting of both polymorphic (n = 3) and monomorphic (n = 19) B-cell lymphoproliferations. Several signalling pathways, cell of origin of PTLD and their relation to viruses were analysed by immunohistochemistry and in situ hybridization. Most PTLD were of activated B-cell origin. Two-thirds of cases showed an Epstein-Barr virus (EBV) infection of the neoplastic cells. NF-κB signalling components were present in the majority of cases, except for EBV-infected cases with latency type III lacking CD19 and upstream B-cell signalling constituents. Proteins involved in B-cell receptor signalling like Bruton tyrosine kinase were only present in a minority of cases. Phosphoinositide 3-kinase (PI3K) was expressed in 94% of cases and the druggable PI3K class 1 catalytic subunit p110 in 76%, while proteins of other signalling transduction pathways were expressed only in single cases. Unsupervised cluster analysis revealed three distinct subgroups: (i) related to EBV infection, mainly latency type III and mostly lacking CD19, upstream B-cell signalling and NF-κB constituents; (ii) mostly related to EBV infection with expression of the alternative NF-κB pathway compound RelB, CD10, and FOXP1 or MUM1; and finally, (iii) mostly unrelated to virus infection with expression of the classic NF-κB pathway compound p65. EBV and NF-κB are important drivers in PTLD in contrast to B-cell receptor signalling. The main signal transduction pathway is related to PI3K. This links PTLD to other subgroups of EBV-related lymphomas, highlighting also new potential treatment approaches. Copyright © 2016 John Wiley & Sons, Ltd.
Copyright © 2016 John Wiley & Sons, Ltd.

  • Immunology and Microbiology

The phosphatidylinositol 3-kinase (PI3K)/AKT pathway is activated in multiple cancers including ovarian carcinoma (OC). However, the relative contribution of the single components within the PI3K pathway to AKT activation in OC is still unclear. We examined 98 tumor samples from Italian OC patients for alterations in the members of the PI3K pathway. We report that AKT is significantly hyperactive in OC compared to normal tissue (n = 93; p<0.0001) and that AKT activation is preferentially observed in the elderly (>58 years old; n = 93; p<0.05). The most frequent alteration is the overexpression of the p110α catalytic subunit of PI3K (63/93, ∼68%); less frequent alterations comprise the loss of PTEN (24/89, 27%) and the overexpression of AKT1 (18/96, 19%) or AKT2 (11/88,12.5%). Mutations in the PIK3CA or KRAS genes were detected at lower frequency (12% and 10%, respectively) whereas mutations in AKT1 or AKT2 genes were absent. Although many tumors presented a single lesion (28/93, of which 23 overexpressed PIK3CA, 1 overexpressed AKT and 4 had lost PTEN), many OC (35/93) presented multiple alterations within the PI3K pathway. Apparently, aberrant PI3K signalling was mediated by activation of the canonical downstream AKT-dependent mTOR/S6K1/4EBP1 pathway and by regulation of expression of oncogenic transcription factors that include HMGA1, JUN-B, FOS and MYC but not by AKT-independent activation of SGK3. FISH analysis indicated that gene amplification of PIK3CA, AKT1 and AKT2 (but not of PI3KR1) and the loss of PTEN are common and may account for changes in the expression of the corresponding proteins. In conclusion, our results indicate that p110α overexpression represents the most frequent alteration within the PI3K/AKT pathway in OC. However, p110α overexpression may not be sufficient to activate AKT signalling and drive ovarian tumorigenesis since many tumors overexpressing PI3K presented at least one additional alteration.

  • IHC
  • Homo sapiens (Human)
  • Cancer Research
  • Genetics
View this product on CiteAb