Product Citations: 2

Aβ oligomers promote oligodendrocyte differentiation and maturation via integrin β1 and Fyn kinase signaling.

In Cell Death & Disease on 6 June 2019 by Quintela-López, T., Ortiz-Sanz, C., et al.

Alzheimer´s disease (AD) is characterized by a progressive cognitive decline that correlates with the levels of amyloid β-peptide (Aβ) oligomers. Strong evidences connect changes of oligodendrocyte function with the onset of neurodegeneration in AD. However, the mechanisms controlling oligodendrocyte responses to Aβ are still elusive. Here, we tested the role of Aβ in oligodendrocyte differentiation, maturation, and survival in isolated oligodendrocytes and in organotypic cerebellar slices. We found that Aβ peptides specifically induced local translation of 18.5-kDa myelin basic protein (MBP) isoform in distal cell processes concomitant with an increase of process complexity of MBP-expressing oligodendrocytes. Aβ oligomers required integrin β1 receptor, Src-family kinase Fyn and Ca2+/CaMKII as effectors to modulate MBP protein expression. The pharmacological inhibition of Fyn kinase also attenuated oligodendrocyte differentiation and survival induced by Aβ oligomers. Similarly, using ex vivo organotypic cerebellar slices Aβ promoted MBP upregulation through Fyn kinase, and modulated oligodendrocyte population dynamics by inducing cell proliferation and differentiation. Importantly, application of Aβ to cerebellar organotypic slices enhanced remyelination and oligodendrocyte lineage recovery in lysolecithin (LPC)-induced demyelination. These data reveal an important role of Aβ in oligodendrocyte lineage function and maturation, which may be relevant to AD pathogenesis.

  • WB
  • Rattus norvegicus (Rat)
  • Cell Biology
  • Neuroscience

The survival of T lymphocytes requires sustained, Ca(2+) influx-dependent gene expression. The molecular mechanism that governs sustained Ca(2+) influx in naive T lymphocytes is unknown. Here we report an essential role for the beta3 regulatory subunit of voltage-gated calcium (Ca(v)) channels in the maintenance of naive CD8(+) T cells. Deficiency in beta3 resulted in a profound survival defect of CD8(+) T cells. This defect correlated with depletion of the pore-forming subunit Ca(v)1.4 and attenuation of T cell antigen receptor (TCR)-mediated global Ca(2+) entry in CD8(+) T cells. Ca(v)1.4 and beta3 associated with T cell signaling machinery and Ca(v)1.4 localized in lipid rafts. Our data demonstrate a mechanism by which Ca(2+) entry is controlled by a Ca(v)1.4-beta3 channel complex in T cells.

  • Immunology and Microbiology
View this product on CiteAb