Product Citations: 22

Cell cycle duration determines oncogenic transformation capacity.

In Nature on 1 May 2025 by Chen, D., Lu, S., et al.

Oncogenic mutations are widespread in normal human tissues1. Similarly, in murine chimeras, cells carrying an oncogenic lesion contribute normal cells to adult tissues without causing cancer2-4. How lineages that escape cancer via normal development differ from the minority that succumb is unclear. Tumours exhibit characteristic cancer hallmarks; we therefore searched for hallmarks that differentiate cancer-prone lineages from resistant lineages. Here we show that total cell cycle duration (Tc) predicts transformation susceptibility across multiple tumour types. Cancer-prone Rb- and p107-deficient retina (Rb is also known as Rb1 and p107 is also known as Rbl1) exhibited defects in apoptosis, senescence, immune surveillance, angiogenesis, DNA repair, polarity and proliferation. Perturbing the SKP2-p27-CDK2/CDK1 axis could block cancer without affecting these hallmarks. Thus, cancer requires more than the presence of its hallmarks. Notably, every tumour-suppressive mutation that we tested increased Tc, and the Tc of the cell of origin of retinoblastoma cells was half that of resistant lineages. Tc also differentiated the cell of origin in Rb-/- pituitary cancer. In lung, loss of Rb and p53 (also known as Trp53) transforms neuroendocrine cells, whereas KrasG12D or BrafV600E mutations transform alveolar type 2 cells5-7. The shortest Tc consistently identified the cell of origin, regardless of mutation timing. Thus, relative Tc is a hallmark of initiation that distinguishes cancer-prone from cancer-resistant lineages in several settings, explaining how mutated cells escape transformation without inducing apoptosis, senescence or immune surveillance.
© 2025. The Author(s).

Metabolic heterogeneity in various cancer cells within a tumor causes resistance to medical therapies and promotes tumor recurrence and metastasis. However, the mechanisms by which tumors acquire metabolic heterogeneity are poorly understood. Here, we revealed that PKCλ-dependent asymmetric division of ALDH1-positive cancer stem cells (CSCs) led to an uneven distribution of glycolytic capacity, which is crucial for understanding metabolic heterogeneity within a tumor. The rate-limiting enzyme PFKP and the metabolic probe CDG in glycolysis codistributed with the ALDH1A3 protein during the post-cell division phase, highlighting a mechanism for acquiring metabolic diversity. PKCλ deficiency reduced the asymmetric distribution of these proteins in ALDH1high cells with high ALDH1 activity, suggesting a fundamental role for PKCλ in metabolic heterogeneity. We identified 28 distinct distribution patterns combining PFKP and CDG distributions, demonstrating the complexity of glycolytic heterogeneity. Furthermore, validation and prediction of cell distribution patterns via a probabilistic model confirmed that PKCλ deficiency diminished glycolytic diversity in individual cells within a cancer cell colony generated from an ALDH1-positive CSC. These findings suggest that PKCλ-dependent asymmetric cell division of ALDH1-positive CSCs is crucial for glycolytic heterogeneity in cancer cells within a tumor, potentially offering new therapeutic targets against tumor resistance and metastasis.
© 2025. The Author(s).

  • Cancer Research
  • Stem Cells and Developmental Biology

Renal Cell Carcinoma (RCC) is the most common type of kidney cancer (85%). 75% of the RCC cases involve conventional clear cell RCC (ccRCC). Approximately, 39% of late-stage patients (stage IV) are treated with chemotherapeutic agents. Phosphatidylinositol-3-kinase (PI3K) and Mitogen-Activated Protein Kinase Kinase (MEK)/extracellular signal-regulated kinase (ERK1/2) pathways are frequently activated in RCC. In addition, atypical PKCs (PKC-ί and PKC ζ) are overexpressed in most cancer cells, and they play a central role in tumor progression and the metastasis of different types of cancers. Our goal is to establish the role of aPKCs in the regulation of multiple key activated pathways in ccRCC. In this study, we also established a novel therapeutic regimen for dual inhibition of key activated pathways.
In this study, 786-0 and Caki-1 cells were studied and subjected to cell viability assay, western blot analysis, scratch & wound healing assay, transwell invasion assay, immunofluorescence, immunoprecipitation, flow cytometry, and quantitative real-time polymerase chain reaction. We used combination of PI3K inhibitor- Alpelisib (BYL719) and ICA-1 (a PKC-ι-specific 5-amino-1-2,3-dihydroxy-4-(methylcyclopentyl)-1H-imidazole-4-carboxamide). In addition to drug treatment, small interfering RNA (siRNA) technology was used to further confirm the experimental outcome of the drug treatment.
Our results suggest that treatment of ccRCC cells with a combination of ICA-1 (aPKC inhibitor) and BYL719 (PI3K inhibitor) downregulates PKC-ί and causes downstream inhibition of c-Myc. Inhibition of the PKCί also reduces activation of MEK/ERK1/2. It is observed that treatment with ICA-1 disrupts the level of the aPKC-Akt1 association. ICA-1 treatment also shows a reduced level of association between aPKC and c-Myc. The inhibition of aPKCs and downstream effector proteins by combination therapy is more pronounced compared to a single therapy. These effects contribute to reduced cell growth, and eventually, the induction of apoptosis. The decreased level of N-cadherin, p-vimentin, and vimentin and the increased level of E-cadherin confirm reduced malignancy.
Therefore, implementing a combination of Alpelisib and a PKC-ι inhibitor is an effective approach to reducing cell proliferation, and invasion that eventually induces apoptosis and may be considered as a potential therapeutic option in ccRCC.
Copyright © 2024 Khalid, Ratnayake, Apostolatos and Acevedo-Duncan.

  • Homo sapiens (Human)
  • Cancer Research

Protein kinase Cι mediates immunosuppression in lung adenocarcinoma.

In Science Translational Medicine on 16 November 2022 by Yin, N., Liu, Y., et al.

Lung adenocarcinoma (LUAD) is the most prevalent form of non-small cell lung cancer (NSCLC) and a leading cause of cancer death. Immune checkpoint inhibitors (ICIs) of programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) signaling induce tumor regressions in a subset of LUAD, but many LUAD tumors exhibit resistance to ICI therapy. Here, we identified Prkci as a major determinant of response to ICI in a syngeneic mouse model of oncogenic mutant Kras/Trp53 loss (KP)-driven LUAD. Protein kinase Cι (PKCι)-dependent KP tumors exhibited resistance to anti-PD-1 antibody therapy (α-PD-1), whereas KP tumors in which Prkci was genetically deleted (KPI tumors) were highly responsive. Prkci-dependent resistance to α-PD-1 was characterized by enhanced infiltration of myeloid-derived suppressor cells (MDSCs) and decreased infiltration of CD8+ T cells in response to α-PD-1. Mechanistically, Prkci regulated YAP1-dependent expression of Cxcl5, which served to attract MDSCs to KP tumors. The PKCι inhibitor auranofin inhibited KP tumor growth and sensitized these tumors to α-PD-1, whereas expression of either Prkci or its downstream effector Cxcl5 in KPI tumors induced intratumoral infiltration of MDSCs and resistance to α-PD-1. PRKCI expression in tumors of patients with LUAD correlated with genomic signatures indicative of high YAP1-mediated transcription, elevated MDSC infiltration and low CD8+ T cell infiltration, and with elevated CXCL5/6 expression. Last, PKCι-YAP1 signaling was a biomarker associated with poor response to ICI in patients with LUAD. Our data indicate that immunosuppressive PKCι-YAP1-CXCL5 signaling is a key determinant of response to ICI, and pharmacologic inhibition of PKCι may improve therapeutic response to ICI in patients with LUAD.

  • Cancer Research

We report that atypical protein kinase Cι (PKCι) is an oncogenic driver of glioblastoma (GBM). Deletion or inhibition of PKCι significantly impairs tumor growth and prolongs survival in murine GBM models. GBM cells expressing elevated PKCι signaling are sensitive to PKCι inhibitors, whereas those expressing low PKCι signaling exhibit active SRC signaling and sensitivity to SRC inhibitors. Resistance to the PKCι inhibitor auranofin is associated with activated SRC signaling and response to a SRC inhibitor, whereas resistance to a SRC inhibitor is associated with activated PKCι signaling and sensitivity to auranofin. Interestingly, PKCι- and SRC-dependent cells often co-exist in individual GBM tumors, and treatment of GBM-bearing mice with combined auranofin and SRC inhibitor prolongs survival beyond either drug alone. Thus, we identify PKCι and SRC signaling as distinct therapeutic vulnerabilities that are directly translatable into an improved treatment for GBM.
Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Homo sapiens (Human)
View this product on CiteAb