Product Citations: 9

Basal delamination during mouse gastrulation primes pluripotent cells for differentiation.

In Developmental Cell on 20 May 2024 by Sato, N., Rosa, V. S., et al.

The blueprint of the mammalian body plan is laid out during gastrulation, when a trilaminar embryo is formed. This process entails a burst of proliferation, the ingression of embryonic epiblast cells at the primitive streak, and their priming toward primitive streak fates. How these different events are coordinated remains unknown. Here, we developed and characterized a 3D culture of self-renewing mouse embryonic cells that captures the main transcriptional and architectural features of the early gastrulating mouse epiblast. Using this system in combination with microfabrication and in vivo experiments, we found that proliferation-induced crowding triggers delamination of cells that express high levels of the apical polarity protein aPKC. Upon delamination, cells become more sensitive to Wnt signaling and upregulate the expression of primitive streak markers such as Brachyury. This mechanistic coupling between ingression and differentiation ensures that the right cell types become specified at the right place during embryonic development.
Copyright © 2024 MRC Laboratory of Molecular Biology. Published by Elsevier Inc. All rights reserved.

  • Mus musculus (House mouse)
  • Stem Cells and Developmental Biology

The metabolic and signaling pathways regulating aggressive mesenchymal colorectal cancer (CRC) initiation and progression through the serrated route are largely unknown. Although relatively well characterized as BRAF mutant cancers, their poor response to current targeted therapy, difficult preneoplastic detection, and challenging endoscopic resection make the identification of their metabolic requirements a priority. Here, we demonstrate that the phosphorylation of SCAP by the atypical PKC (aPKC), PKCλ/ι promotes its degradation and inhibits the processing and activation of SREBP2, the master regulator of cholesterol biosynthesis. We show that the upregulation of SREBP2 and cholesterol by reduced aPKC levels is essential for controlling metaplasia and generating the most aggressive cell subpopulation in serrated tumors in mice and humans. Since these alterations are also detected prior to neoplastic transformation, together with the sensitivity of these tumors to cholesterol metabolism inhibitors, our data indicate that targeting cholesterol biosynthesis is a potential mechanism for serrated chemoprevention.
© 2023. The Author(s).

  • WB

PKCλ/ι inhibition activates an ULK2-mediated interferon response to repress tumorigenesis.

In Molecular Cell on 4 November 2021 by Linares, J. F., Zhang, X., et al.

The interferon (IFN) pathway is critical for cytotoxic T cell activation, which is central to tumor immunosurveillance and successful immunotherapy. We demonstrate here that PKCλ/ι inactivation results in the hyper-stimulation of the IFN cascade and the enhanced recruitment of CD8+ T cells that impaired the growth of intestinal tumors. PKCλ/ι directly phosphorylates and represses the activity of ULK2, promoting its degradation through an endosomal microautophagy-driven ubiquitin-dependent mechanism. Loss of PKCλ/ι results in increased levels of enzymatically active ULK2, which, by direct phosphorylation, activates TBK1 to foster the activation of the STING-mediated IFN response. PKCλ/ι inactivation also triggers autophagy, which prevents STING degradation by chaperone-mediated autophagy. Thus, PKCλ/ι is a hub regulating the IFN pathway and three autophagic mechanisms that serve to maintain its homeostatic control. Importantly, single-cell multiplex imaging and bioinformatics analysis demonstrated that low PKCλ/ι levels correlate with enhanced IFN signaling and good prognosis in colorectal cancer patients.
Copyright © 2021 Elsevier Inc. All rights reserved.

  • Biochemistry and Molecular biology

Oxidative stress plays a critical role in liver tissue damage and in hepatocellular carcinoma (HCC) initiation and progression. However, the mechanisms that regulate autophagy and metabolic reprogramming during reactive oxygen species (ROS) generation, and how ROS promote tumorigenesis, still need to be fully understood. We show that protein kinase C (PKC) λ/ι loss in hepatocytes promotes autophagy and oxidative phosphorylation. This results in ROS generation, which through NRF2 drives HCC through cell-autonomous and non-autonomous mechanisms. Although PKCλ/ι promotes tumorigenesis in oncogene-driven cancer models, emerging evidence demonstrate that it is a tumor suppressor in more complex carcinogenic processes. Consistently, PKCλ/ι levels negatively correlate with HCC histological tumor grade, establishing this kinase as a tumor suppressor in liver cancer.
Copyright © 2020 Elsevier Inc. All rights reserved.

  • Mus musculus (House mouse)
  • Cancer Research
  • Cell Biology

The signaling axis atypical protein kinase C λ/ι-Satb2 mediates leukemic transformation of B-cell progenitors.

In Nature Communications on 4 January 2019 by Nayak, R. C., Hegde, S., et al.

Epigenetically regulated transcriptional plasticity has been proposed as a mechanism of differentiation arrest and resistance to therapy. BCR-ABL leukemias result from leukemic stem cell/progenitor transformation and represent an opportunity to identify epigenetic progress contributing to lineage leukemogenesis. Primary human and murine BCR-ABL+ leukemic progenitors have increased activation of Cdc42 and the downstream atypical protein kinase C (aPKC). While the isoform aPKCζ behaves as a leukemic suppressor, aPKCλ/ι is critically required for oncogenic progenitor proliferation, survival, and B-cell differentiation arrest, but not for normal B-cell lineage differentiation. In vitro and in vivo B-cell transformation by BCR-ABL requires the downregulation of key genes in the B-cell differentiation program through an aPKC λ/ι-Erk dependent Etv5/Satb2 chromatin repressive signaling complex. Genetic or pharmacological targeting of aPKC impairs human oncogenic addicted leukemias. Therefore, the aPKCλ/ι-SATB2 signaling cascade is required for leukemic BCR-ABL+ B-cell progenitor transformation and is amenable to non-tyrosine kinase inhibition.

  • WB
  • Homo sapiens (Human)
  • Immunology and Microbiology
View this product on CiteAb