Product Citations: 12

T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous and aggressive malignancy arising from T-cell precursors. MiRNAs are implicated in negative regulation of gene expression and when aberrantly expressed contribute to various cancer types, including T-ALL. Previously we demonstrated the oncogenic potential of miR-363-3p overexpression in a subgroup of T-ALL patients. Here, using combined proteomic and transcriptomic approaches, we show that miR-363-3p enhances cell growth of T-ALL in vitro via inhibition of PTPRC and SOCS2, which are implicated in repression of the JAK-STAT pathway. We propose that overexpression of miR-363-3p is a novel mechanism potentially contributing to overactivation of JAK-STAT pathway. Additionally, by combining the transcriptomic and methylation data of T-ALL patients, we show that promoter methylation may also contribute to downregulation of SOCS2 expression and thus potentially to JAK-STAT activation. In conclusion, we highlight aberrant miRNA expression and aberrant promoter methylation as mechanisms, alternative to mutations of JAK-STAT-related genes, which might lead to the upregulation of JAK-dependent signaling in T-ALL.
© 2022 The Authors. Genes, Chromosomes and Cancer published by Wiley Periodicals LLC.

  • Homo sapiens (Human)

The pathogenesis of pulmonary arterial hypertension (PAH) involves many signalling pathways. MicroRNAs are potential candidates involved in simultaneously coordinating multiple genes under such multifactorial conditions.
MiR-138-5p is overexpressed in pulmonary arterial smooth muscle cells (PASMCs) from PAH patients and in lungs from rats with monocrotaline-induced pulmonary hypertension (MCT-PH). MiR-138-5p is predicted to regulate the expression of the potassium channel KCNK3, whose loss is associated with the development and progression of PAH. We hypothesized that, in vivo, miR-138-5p inhibition would restore KCNK3 lung expression and subsequently alleviate PAH. Nebulization-based delivery of anti-miR-138-5p to rats with established MCT-PH significantly reduced the right ventricular systolic pressure and significantly improved the pulmonary arterial acceleration time (PAAT). These haemodynamic improvements were related to decrease pulmonary vascular remodelling, lung inflammation and pulmonary vascular cell proliferation in situ. In vivo inhibition of miR-138-5p restored KCNK3 mRNA expression and SLC45A3 protein expression in the lungs.
We confirmed that in vivo inhibition of miR-138-5p reduces the development of PH in experimental MCT-PH. The possible curative mechanisms involve at least the normalization of lung KCNK3 as well as SLC45A3 expression.

  • WB
  • Rattus norvegicus (Rat)
  • Cardiovascular biology

Dose-dependent effect of triiodothyronine on the chondrogenic differentiation of mesenchymal stem cells from the bone marrow of female rats.

In The Journal of Pharmacy and Pharmacology on 1 January 2018 by Assis, H. A., Elert, N. C., et al.

Verify the in-vitro effect of triiodothyronine (T3) on the chondrogenic differentiation of female rat bone marrow mesenchymal stem cells (BMMSCs) over several time periods and at several doses.
CD54 + /CD73 + /CD90 +  BMMSCs from Wistar female rats were cultured in chondrogenic medium with or without T3 (0.01; 1; 100; 1000 nm). At seven, 14 and 21 days, the cell morphology, chondrogenic matrix formation and expression of Sox9 and collagen II were evaluated.
The dose of 100 nm did not alter the parameters evaluated in any of the periods studied. However, the 0.01 nm T3 dose improved the chondrogenic potential by increasing the chondrogenic matrix formation and expression of Sox9 and collagen II in at least one of the evaluated periods; the 1 nm T3 dose also improved the chondrogenic potential by increasing the chondrogenic matrix formation and the expression of collagen II in at least one of the evaluated periods. The 1000 nm T3 dose improved the chondrogenic potential by increasing the chondrogenic matrix formation and Sox9 expression in at least one of the evaluated periods.
T3 has a dose-dependent effect on the differentiation of BMMSCs from female rats.
© 2017 Royal Pharmaceutical Society.

  • Stem Cells and Developmental Biology

IFITMs are broad antiviral factors that block incoming virions in endosomal vesicles, protecting target cells from infection. In the case of HIV-1, we and others reported the existence of an additional antiviral mechanism through which IFITMs lead to the production of virions of reduced infectivity. However, whether this second mechanism of inhibition is unique to HIV or extends to other viruses is currently unknown. To address this question, we have analyzed the susceptibility of a broad spectrum of viruses to the negative imprinting of the virion particles infectivity by IFITMs. The results we have gathered indicate that this second antiviral property of IFITMs extends well beyond HIV and we were able to identify viruses susceptible to the three IFITMs altogether (HIV-1, SIV, MLV, MPMV, VSV, MeV, EBOV, WNV), as well as viruses that displayed a member-specific susceptibility (EBV, DUGV), or were resistant to all IFITMs (HCV, RVFV, MOPV, AAV). The swapping of genetic elements between resistant and susceptible viruses allowed us to point to specificities in the viral mode of assembly, rather than glycoproteins as dominant factors of susceptibility. However, we also show that, contrarily to X4-, R5-tropic HIV-1 envelopes confer resistance against IFITM3, suggesting that viral receptors add an additional layer of complexity in the IFITMs-HIV interplay. Lastly, we show that the overall antiviral effects ascribed to IFITMs during spreading infections, are the result of a bimodal inhibition in which IFITMs act both by protecting target cells from incoming viruses and in driving the production of virions of reduced infectivity. Overall, our study reports for the first time that the negative imprinting of the virion particles infectivity is a conserved antiviral property of IFITMs and establishes IFITMs as a paradigm of restriction factor capable of interfering with two distinct phases of a virus life cycle.

  • Immunology and Microbiology

Zika virus infection damages the testes in mice.

In Nature on 15 December 2016 by Govero, J., Esakky, P., et al.

Infection of pregnant women with Zika virus (ZIKV) can cause congenital malformations including microcephaly, which has focused global attention on this emerging pathogen. In addition to transmission by mosquitoes, ZIKV can be detected in the seminal fluid of affected males for extended periods of time and transmitted sexually. Here, using a mouse-adapted African ZIKV strain (Dakar 41519), we evaluated the consequences of infection in the male reproductive tract of mice. We observed persistence of ZIKV, but not the closely related dengue virus (DENV), in the testis and epididymis of male mice, and this was associated with tissue injury that caused diminished testosterone and inhibin B levels and oligospermia. ZIKV preferentially infected spermatogonia, primary spermatocytes and Sertoli cells in the testis, resulting in cell death and destruction of the seminiferous tubules. Less damage was caused by a contemporary Asian ZIKV strain (H/PF/2013), in part because this virus replicates less efficiently in mice. The extent to which these observations in mice translate to humans remains unclear, but longitudinal studies of sperm function and viability in ZIKV-infected humans seem warranted.

  • IHC
  • Mus musculus (House mouse)
  • Immunology and Microbiology
View this product on CiteAb