Product Citations: 73

Jamming of nephron-forming niches in the developing mouse kidney creates cyclical mechanical stresses.

In Nature Materials on 1 November 2024 by Prahl, L. S., Liu, J., et al.

Urinary collecting tubules form during kidney embryogenesis through the branching of the ureteric bud epithelium. A travelling mesenchyme niche of nephron progenitor cells caps each branching ureteric bud tip. These 'tip domain' niches pack more closely over developmental time and their number relates to nephron endowment at birth. Yet, how the crowded tissue environment impacts niche number and cell decision-making remains unclear. Here, through experiments and mathematical modelling, we show that niche packing conforms to physical limitations imposed by kidney curvature. We relate packing geometries to rigidity theory to predict a stiffening transition starting at embryonic day 15 in the mouse, validated by micromechanical analysis. Using a method to estimate tip domain 'ages' relative to their most recent branch events, we find that new niches overcome mechanical resistance as they branch and displace neighbours. This creates rhythmic mechanical stress in the niche. These findings expand our understanding of kidney development and inform engineering strategies for synthetic regenerative tissues.
© 2024. The Author(s), under exclusive licence to Springer Nature Limited.

Adenomyosis (AM) is a gynecological disease characterized by the invasion of endometrial glands and stroma within the myometrium. The etiology and pathogenesis of AM remain inadequately understood. Pale cells were identified as a novel cell type characterized by the absence of desmosomal contacts and light-colored cytoplasm. These cells were observed to migrate individually through ultra-micro ruptures in the basal membrane of the endometrial glands, translocating into the stroma and then further into the myometrium. Our study aimed to explore the possible stem cell properties of these pale cells. Forty hysterectomy specimens were analyzed using immunohistochemistry and immunofluorescence to assess negative E-cadherin expression and the positive expression of stem cell markers SSEA-1, MSI-1, and SOX-2. Immunohistochemical analysis revealed the presence of pale cells and occasionally rounded, enlarged E-cadherin-negative cells predominantly in the basal endometrial epithelium. The stem cell marker SSEA-1 was significantly elevated in the basalis epithelium, as well as in the ectopic epithelium. SSEA-1 positive cells were also identified in the stroma and myometrium. Sporadic colocalization of SSEA-1+/E-cadherin- cells was confirmed through immunofluorescence. The positive staining of pale cells for SSEA-1 and MSI-1 was also confirmed at the ultrastructural level by immunoelectron microscopy. These findings indicate that pale cells may possess stem cell characteristics, particularly a positive SSEA-1 profile, warranting further in vitro investigation into their role in the pathogenesis of adenomyosis.

  • IHC
  • Biochemistry and Molecular biology

NINJ1 regulates ferroptosis via xCT antiporter interaction and CoA modulation.

In Cell Death & Disease on 18 October 2024 by Chen, S. Y., Wu, J., et al.

Ninjurin-1 (NINJ1), initially identified as a stress-induced protein in neurons, recently emerged as a key mediator of plasma membrane rupture (PMR) during apoptosis, necrosis, and pyroptosis. However, its involvement in ferroptosis is less well elucidated. Here, we demonstrate that NINJ1 also plays a crucial role in ferroptosis, but through a distinct mechanism. NINJ1 knockdown significantly protected cancer cells against ferroptosis induced only by xCT inhibitors but no other classes of ferroptosis-inducing compounds (FINs). Glycine, known to inhibit canonical NINJ1-mediated membrane rupture in other cell deaths, had no impact on ferroptosis. A compound screen revealed that the ferroptosis protective effect caused by NINJ1 knockdown can be abolished by pantothenate kinase inhibitor (PANKi), buthionine sulfoximine (BSO), and diethylmaleate (DEM). These results suggest that this ferroptosis protection is mediated via Coenzyme A (CoA) and glutathione (GSH), both of which were found to be elevated upon NINJ1 knockdown. Furthermore, we discovered that NINJ1 interacts with the xCT antiporter, which is responsible for cystine uptake for the biosynthesis of CoA and GSH. The removal of NINJ1 increased xCT levels and stability, enhancing cystine uptake and thereby providing protection against ferroptosis. Conversely, NINJ1 overexpression reduced xCT levels and sensitized ferroptosis. These findings reveal that NINJ1 regulates ferroptosis via a non-canonical mechanism, distinct from other regulated cell deaths.
© 2024. The Author(s).

  • IF
  • Homo sapiens (Human)
  • Cell Biology

Differences in Protein Capture by SP3 and SP4 Demonstrate Mechanistic Insights of Proteomics Clean-up Techniques

Preprint on BioRxiv : the Preprint Server for Biology on 13 March 2024 by Conforti, J. M., Ziegler, A. M., et al.

ABSTRACT The goal of proteomics experiments is to identify proteins to observe changes in cellular processes and diseases. One challenge in proteomics is the removal of contaminants following protein extraction, which can limit protein identification. Single-pot, solid-phase-enhanced sample preparation (SP3) is a clean-up technique in which proteins are captured on carboxylate-modified particles through a proposed hydrophilic-interaction-liquid-chromatography (HILIC)-like mechanism. However, recent results have suggested that proteins are captured in SP3 due to a protein-aggregation mechanism. Thus, solvent precipitation, single-pot, solid-phase-enhanced sample preparation (SP4) is a newer clean-up technique that employs protein-aggregation to capture proteins without modified particles. SP4 has previously enriched low-solubility proteins, though differences in protein capture could affect which proteins are detected and identified. We hypothesize that the mechanisms of capture for SP3 and SP4 are distinct. Herein, we assess the proteins identified and enriched using SP3 versus SP4 for MCF7 subcellular fractions and correlate protein capture in each method to protein hydrophobicity. Our results indicate that SP3 captures more hydrophilic proteins through a combination of HILIC-like and protein-aggregation mechanisms, while SP4 captures more hydrophobic proteins through a protein-aggregation mechanism. From these results, we recommend clean-up techniques based on protein-sample hydrophobicity to yield high proteome coverage in biological samples.

Measurement of adhesion and traction of cells at high yield (MATCHY) reveals an energetic ratchet driving nephron condensation

Preprint on BioRxiv : the Preprint Server for Biology on 8 February 2024 by Liu, J., Prahl, L. S., et al.

Engineering of embryonic strategies for tissue-building has extraordinary promise for regenerative medicine. This has led to a resurgence in interest in the relationship between cell biophysical properties and morphological transitions. However, mapping gene or protein expression data to cell biophysical properties to physical morphogenesis remains challenging with current techniques. Here we present MATCHY ( m ultiplexed a dhesion and traction of c ells at h igh y ield). MATCHY advances the multiplexing and throughput capabilities of existing traction force and cell-cell adhesion assays using microfabrication and an automated computation scheme with machine learning-driven cell segmentation. Both biophysical assays are coupled with serial downstream immunofluorescence to extract cell type/signaling state information. MATCHY is especially suited to complex primary tissue-, organoid-, or biopsy-derived cell mixtures since it does not rely on a priori knowledge of cell surface markers, cell sorting, or use of lineage-specific reporter animals. We first validate MATCHY on canine kidney epithelial cells engineered for RET tyrosine kinase expression and quantify a relationship between downstream signaling and cell traction. We go on to create a biophysical atlas of primary cells dissociated from the mouse embryonic kidney and use MATCHY to identify distinct biophysical states along the nephron differentiation trajectory. Our data complement expression-level knowledge of adhesion molecule changes that accompany nephron differentiation with quantitative biophysical information. These data reveal an ‘energetic ratchet’ that explains spatial nephron progenitor cell condensation from the niche as they differentiate, which we validate through agent-based computational simulation. MATCHY offers automated cell biophysical characterization at >10 4 -cell throughput, a highly enabling advance for fundamental studies and new synthetic tissue design strategies for regenerative medicine.

View this product on CiteAb