Product Citations: 10

Bone-resorbing osteoclasts (OCLs) are multinucleated phagocytes, whose central roles in regulating bone formation and homeostasis are critical for normal health and development. OCLs are produced from precursor monocytes in a multistage process that includes initial differentiation, cell-cell fusion, and subsequent functional and morphological maturation; the molecular regulation of osteoclastogenesis is not fully understood. Here, we identify the receptor-type protein tyrosine phosphatase PTPRJ as an essential regulator specifically of OCL maturation. Monocytes from PTPRJ-deficient (JKO) mice differentiate and fuse normally, but their maturation into functional OCLs and their ability to degrade bone are severely inhibited. In agreement, mice lacking PTPRJ throughout their bodies or only in OCLs exhibit increased bone mass due to reduced OCL-mediated bone resorption. We further show that PTPRJ promotes OCL maturation by dephosphorylating the M-CSF receptor (M-CSFR) and Cbl, thus reducing the ubiquitination and degradation of the key osteoclastogenic transcription factor NFATc1. Loss of PTPRJ increases ubiquitination of NFATc1 and reduces its amounts at later stages of osteoclastogenesis, thereby inhibiting OCL maturation. PTPRJ thus fulfills an essential and cell-autonomous role in promoting OCL maturation by balancing between the pro- and anti-osteoclastogenic activities of the M-CSFR and maintaining NFATc1 expression during late osteoclastogenesis.
© 2021 Federation of European Biochemical Societies.

  • WB

Targeting KPNB1 overcomes TRAIL resistance by regulating DR5, Mcl-1 and FLIP in glioblastoma cells.

In Cell Death & Disease on 11 February 2019 by Zhu, Z. C., Liu, J. W., et al.

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a cytokine with potential anticancer effect, but innate and adaptive TRAIL resistance in majority of cancers limit its clinical application. Karyopherin β1 (KPNB1) inhibition in cancer cells has been reported to abrogate the nuclear import of TRAIL receptor DR5 and facilitate its localization on the cell surface ready for TRAIL stimulation. However, our study reveals a more complicated mechanism. Genetic or pharmacological inhibition of KPNB1 potentiated TRAIL-induced apoptosis selectively in glioblastoma cells mainly by unfolded protein response (UPR). First, it augmented ATF4-mediated DR5 expression and promoted the assembly of death-inducing signaling complex (DISC). Second, it freed Bax and Bak from Mcl-1. Third, it downregulated FLIPL and FLIPS, inhibitors of caspase-8 cleavage, partly through upregulating ATF4-induced 4E-BP1 expression and disrupting the cap-dependent translation initiation. Meanwhile, KPNB1 inhibition-induced undesirable autophagy and accelerated cleaved caspase-8 clearance. Inhibition of autophagic flux maintained cleaved caspase-8 and aggravated apoptosis induced by KPNB1 inhibitor plus TRAIL, which were abolished by caspase-8 inhibitor. These results unveil new molecular mechanism for optimizing TRAIL-directed therapeutic efficacy against cancer.

  • WB
  • Homo sapiens (Human)
  • Cell Biology

Characterization of a novel RP2-OSTF1 interaction and its implication for actin remodelling.

In Journal of Cell Science on 20 February 2018 by Lyraki, R., Lokaj, M., et al.

Retinitis pigmentosa 2 (RP2) is the causative gene for a form of X-linked retinal degeneration. RP2 was previously shown to have GTPase-activating protein (GAP) activity towards the small GTPase ARL3 via its N-terminus, but the function of the C-terminus remains elusive. Here, we report a novel interaction between RP2 and osteoclast-stimulating factor 1 (OSTF1), an intracellular protein that indirectly enhances osteoclast formation and activity and is a negative regulator of cell motility. Moreover, this interaction is abolished by a human pathogenic mutation in RP2. We utilized a structure-based approach to pinpoint the binding interface to a strictly conserved cluster of residues on the surface of RP2 that spans both the C- and N-terminal domains of the protein, and which is structurally distinct from the ARL3-binding site. In addition, we show that RP2 is a positive regulator of cell motility in vitro, recruiting OSTF1 to the cell membrane and preventing its interaction with the migration regulator Myo1E.
© 2018. Published by The Company of Biologists Ltd.

  • WB
  • Homo sapiens (Human)
  • Cell Biology

SEPT9 negatively regulates ubiquitin-dependent downregulation of EGFR.

In Journal of Cell Science on 15 January 2015 by Diesenberg, K., Beerbaum, M., et al.

Septins constitute a family of GTP-binding proteins that are involved in a variety of biological processes. Several isoforms have been implicated in disease, but the molecular mechanisms underlying pathogenesis are poorly understood. Here, we show that depletion of SEPT9 decreases surface levels of epidermal growth factor receptors (EGFRs) by enhancing receptor degradation. We identify a consensus motif within the SEPT9 N-terminal domain that supports its association with the adaptor protein CIN85 (also known as SH3KBP1). We further show CIN85-SEPT9 to be localized exclusively to the plasma membrane, where SEPT9 is recruited to EGF-engaged receptors in a CIN85-dependent manner. Finally, we demonstrate that SEPT9 negatively regulates EGFR degradation by preventing the association of the ubiquitin ligase Cbl with CIN85, resulting in reduced EGFR ubiquitylation. Taken together, these data provide a mechanistic explanation of how SEPT9, though acting exclusively at the plasma membrane, impairs the sorting of EGFRs into the degradative pathway.
© 2015. Published by The Company of Biologists Ltd.

  • Cell Biology

The immunoglobulin tail tyrosine motif upgrades memory-type BCRs by incorporating a Grb2-Btk signalling module.

In Nature Communications on 21 November 2014 by Engels, N., König, L. M., et al.

The vigorous response of IgG-switched memory B cells to recurring pathogens involves enhanced signalling from their B-cell antigen receptors (BCRs). However, the molecular signal amplification mechanisms of memory-type BCRs remained unclear. Here, we identify the immunoglobulin tail tyrosine (ITT) motif in the cytoplasmic segments of membrane-bound IgGs (mIgGs) as the principle signal amplification device of memory-type BCRs in higher vertebrates and decipher its signalling microanatomy. We show that different families of protein tyrosine kinases act upstream and downstream of the ITT. Spleen tyrosine kinase (Syk) activity is required for ITT phosphorylation followed by recruitment of the adaptor protein Grb2 into the mIgG-BCR signalosome. Grb2 in turn recruits Bruton's tyrosine kinase (Btk) to amplify BCR-induced Ca(2+) mobilization. This molecular interplay of kinases and adaptors increases the antigen sensitivity of memory-type BCRs, which provides a cell-intrinsic trigger mechanism for the rapid reactivation of IgG-switched memory B cells on antigen recall.

View this product on CiteAb