Product Citations: 11

Novel cellular mechanism that mediates the collecting duct formation during postnatal renal development.

In Journal of Cellular Physiology on 1 August 2019 by Del Valle Guaytima, E., Brandán, Y. R., et al.

We have previously demonstrated that kidney embryonic structures are present in rats, and are still developing until postnatal Day 20. Consequently, at postnatal Day 10, the rat renal papilla contains newly formed collecting duct (CD) cells and others in a more mature stage. Performing primary cultures, combined with immunocytochemical and time-lapse analysis, we investigate the cellular mechanisms that mediate the postnatal CD formation. CD cells acquired a greater degree of differentiation, as we observed that they gradually lose the ability to bind BSL-I lectin, and acquire the capacity to bind Dolichos biflorus. Because CD cells retain the same behavior in culture than in vivo, and by using DBA and BSL-I as markers of cellular lineage besides specific markers of epithelial/mesenchymal phenotype, the experimental results strongly suggest the existence of mesenchymal cell insertion into the epithelial CD sheet. We propose such a mechanism as an alternative strategy for CD growing and development.
© 2019 Wiley Periodicals, Inc.

  • Endocrinology and Physiology

Bradykinin mediates the association of collecting duct cells to form migratory colonies, through B2 receptor activation.

In Journal of Cellular Physiology on 1 August 2018 by Guaytima, E. D. V., Brandán, Y. R., et al.

It is known that bradykinin (BK) B2 receptor (B2R) is expressed in the collecting duct (CD) cells of the newborn rat kidney, but little is known about its role during early postnatal life. Therefore, we hypothesize that BK could participate in the mechanisms that mediate CD formation during the postnatal renal development. Performing primary cultures, combined with biochemical, immunocytochemical, and time-lapse analysis, we studied the role of BK in CD cell behavior isolated from renal papilla of neonatal rats. A reverse relationship was observed between B2R expression and the degree of CD epithelial cell sheet maturation. BK stimulation induced CD cell association upon B2R activation. The lack of B2R expression in cells showing mature adherens junctions suggested that BK is mostly involved in early adhesive events, thus favoring the initial formation of CD during development. Time-lapse analysis revealed that BK induced a high protrusive activity of CD cells, denoted by ruffle formation and lamellipodia extension. PI3K was involved in the BK-induced CD cell-cell association and the acquisition of the migratory phenotype since, when inhibited, membrane ruffles, and filopodia between cells diminished. Results indicate that the actions of BK mediated by PI3K activation were due to the downstream Akt and Rac pathways. This study, performed with CD cells that were not genetically manipulated, provides new experimental evidence supporting a novel role of BK in rat renal CD organization. As B2R blockade results in abnormal tubular differentiation, our results contribute to better understanding the etiology of human congenital renal malformation and diseases.
© 2018 Wiley Periodicals, Inc.

  • Endocrinology and Physiology

Could a plant derived protein potentiate the anticancer effects of a stem cell in brain cancer?

In Oncotarget on 20 April 2018 by Bonturi, C. R., Motaln, H., et al.

Glioblastoma is the most aggressive brain tumor with poor overall survival bellow 2 years. The natural compounds with anti-cancer properties, are thus gaining attention for possible adjuvant GBM treatment. In various cancer models Enterolobium contortisiliquum Trypsin Inhibitor (EcTI) proved to have anti-cancer effects. Here, we investigated the EcTI effects on GBM U87 cells and on mesenchymal stem cells (MSC) compared to their direct coculture (MSC/U87). MSC are present in tumor stroma, modulating GBM cells phenotype, and also represent potential drug delivery vehicle due to their tumor tropism. We showed that in p53-wild type U87 cells, metabolic activity was less affected by EcTI as in MSC monocuture, but the metabolic rate of mixed coculture was significantly reduced at lower EcTI concentration. Under coculture condition, EcTI potentiated MSC induced cell cycle arrest, possible due to highly increased p53, p21 and lower D1 expression, but there was no effect on apoptosis. Accordingly, in the coculture EcTI also enhanced Ca2+ signalling mediated via bradykinin receptor 2, being associated with nitric oxide release that highly impaired proliferation and invasion. The mechanism did not seem to involve changes in cell adhesion but rather it down-regulated the β1 integrin signaling with associated p-FAK in U87 cells, both supporting inhibition of invasion. Finally, some cytokines were down-regulated, indicating that EcTI inhibition of signalling might be mediated by cytokines. In conclusion, these results indicate that in cocultured MSC/U87 cells EcTI impairs the metabolic activity, proliferation, and reduced invasion, possibly associated with observed cytokines secretion. In this context, we confirmed that the plant derived protein potentiated the anticancer effects, induced by MSC, as represented by GBM U87 cell line.

  • WB
  • Homo sapiens (Human)
  • Cancer Research
  • Plant Science
  • Stem Cells and Developmental Biology

Opposite roles of bradykinin B1 and B2 receptors during cerebral ischaemia-reperfusion injury in experimental diabetic rats.

In European Journal of Neuroscience on 1 January 2016 by Sang, H., Liu, L., et al.

Bradykinin receptors play important roles in cerebral ischaemia-reperfusion (I/R) injury of non-diabetics. Their functions in diabetics, however, have not been studied. In this study, we hypothesized that bradykinin 1 receptor (B1R) and bradykinin 2 receptor (B2R) would be upregulated and participate in the regulation of diabetic ischaemic stroke. To investigate this, we first evaluated B1R and B2R expression at different time points after I/R in non-diabetic and diabetic rats (Sprague-Dawley) by using real-time quantitative reverse transcription polymerase chain reaction, western blotting, and immunofluorescence. Then, pharmacological inhibitors were separately administered via the tail vein to analyse their effects on cerebral ischaemia in diabetics. Both receptors were significantly upregulated after cerebral I/R in non-diabetic and diabetic rats. B1R expression in diabetic rats increased in a sharper manner than in non-diabetic rats, whereas B2R expression increased to the same level during the early stage of reperfusion but later became lower. Interestingly, the upregulated B1R was expressed in astrocytes, whereas B2R was mainly located in neurons in the ischaemic penumbra. Functional studies showed that inhibition of B1R significantly reduced infarct volume, neurological deficits, cell apoptosis, and neuron degeneration, probably by attenuating blood-brain barrier (BBB) disruption and post-ischaemic inflammation, at 24 h after reperfusion. In contrast, B2R antagonist had opposite effects, and exacerbated BBB penetrability and tissue inflammation. These findings suggest that B1R and B2R have detrimental and beneficial effects, respectively in diabetic cerebral ischaemia, which might open new avenues for the treatment of ischaemic stroke in diabetic patients through selective pharmacological blockade or activation.
© 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  • Neuroscience

Effects of Alpha-Lipoic Acid on Oxidative Stress and Kinin Receptor Expression in Obese Zucker Diabetic Fatty Rats.

In Journal of Diabetes Metabolism on 1 June 2015 by Midaoui, A. E., Talbot, S., et al.

To investigate the impact of alpha-lipoic acid on superoxide anion production and NADPH oxidase activity as well as on the expression of kinin B1 and B2 receptors in key organs of obese Zucker Diabetic Fatty rats.
Superoxide anion production was measured by lucigenin chemiluminescence. Kinin B1 and B2 receptors expression was measured at protein and mRNA levels by western blot and qRT-PCR in key organs of Zucker Diabetic Fatty and Zucker lean control rats treated for a period of 6 weeks with a standard diet or a diet containing the antioxidant α-lipoic acid (1 g/kg).
Superoxide anion production and NADPH oxidase activity were significantly enhanced in aorta and adipose tissue of Zucker Diabetic Fatty rats. Kinin B1 and B2 receptors expression levels were also significantly increased in the liver and the gastrocnemius muscle of Zucker Diabetic Fatty rats. Expression of both receptors was not altered in the pancreas of Zucker Diabetic Fatty rats and was undetectable in white retroperitoneal adipose tissue. Alpha-lipoic acid prevented the rise in NADPH oxidase activity in aorta and epididymal adipose tissue of Zucker Diabetic Fatty rats and the upregulation of kinin B1 receptor in liver and gastrocnemius muscle and that of kinin B2 receptor in the liver. Alpha-lipoic acid treatment was found to prevent the final body weight increase without affecting significantly hyperglycemia, hyperinsulinemia and insulin resistance index in Zucker Diabetic Fatty rats.
Findings support the hypothesis that oxidative stress is implicated in the induction of kinin B1 receptor in Zucker Diabetic Fatty rats. The ability of α-lipoic acid to blunt the body weight gain appears to be mediated in part by preventing NADPH oxidase activity rise in adipose tissue and reversing the hepatic upregulation of kinin B1 receptor in Zucker Diabetic Fatty rats.

  • WB
  • Rattus norvegicus (Rat)
View this product on CiteAb