Product Citations: 4

Carboxyl-Terminal Src Kinase Binds CD28 upon Activation and Mutes Downstream Signaling.

In The Journal of Immunology on 15 August 2019 by Skånland, S. S. & Taskén, K.

Full T cell activation depends on stimulation of the TCR in conjunction with a costimulatory receptor. The involvement of costimulatory molecules is potent, and a mechanistic understanding of how downstream signaling is regulated is required to fully understand T cell responsiveness. In this study, a proteomic approach was taken to identify the interactomes of the coreceptors CD2 and CD28. These coreceptors are both positive regulators of T cell activation, but CD28 less potently induces TCR-proximal signaling. C-terminal Src kinase (CSK), a negative regulator of TCR signaling, was identified as a specific and direct interactor only of activated CD28. CSK is recruited to CD28 upon T cell activation, and the in vitro kinase activity of CSK is enhanced in the presence of phosphorylated CD28. Interruption of the CSK/CD28 interaction prior to TCR/CD28 costimulation induces a signaling response which mimics the more potent CD2-induced TCR-proximal pathway activation. Thus, CD28 functions as a novel adaptor protein for CSK, and CSK regulates signaling downstream of CD28.
Copyright © 2019 by The American Association of Immunologists, Inc.

  • Immunology and Microbiology

Recruitment of the major vault protein by InlK: a Listeria monocytogenes strategy to avoid autophagy.

In PLoS Pathogens on 1 August 2011 by Dortet, L., Mostowy, S., et al.

L. monocytogenes is a facultative intracellular bacterium responsible for listeriosis. It is able to invade, survive and replicate in phagocytic and non-phagocytic cells. The infectious process at the cellular level has been extensively studied and many virulence factors have been identified. Yet, the role of InlK, a member of the internalin family specific to L. monocytogenes, remains unknown. Here, we first show using deletion analysis and in vivo infection, that InlK is a bona fide virulence factor, poorly expressed in vitro and well expressed in vivo, and that it is anchored to the bacterial surface by sortase A. We then demonstrate by a yeast two hybrid screen using InlK as a bait, validated by pulldown experiments and immunofluorescence analysis that intracytosolic bacteria via an interaction with the protein InlK interact with the Major Vault Protein (MVP), the main component of cytoplasmic ribonucleoproteic particules named vaults. Although vaults have been implicated in several cellular processes, their role has remained elusive. Our analysis demonstrates that MVP recruitment disguises intracytosolic bacteria from autophagic recognition, leading to an increased survival rate of InlK over-expressing bacteria compared to InlK(-) bacteria. Together these results reveal that MVP is hijacked by L. monocytogenes in order to counteract the autophagy process, a finding that could have major implications in deciphering the cellular role of vault particles.

  • Cell Biology
  • Immunology and Microbiology

Chemoresistance in non-small-cell lung cancer: can multidrug resistance markers predict the response of xenograft lung cancer models to chemotherapy?

In European Journal of Cardio-Thoracic Surgery : Official Journal of the European Association for Cardio-thoracic Surgery on 1 July 2011 by Merk, J., Rolff, J., et al.

In chemotherapy for non-small-cell lung cancer (NSCLC), some patients seem to exhibit an intrinsic resistance or develop an acquired resistance under treatment. Results on resistance markers for possible treatment failure as shown in studies on selected lung cancer cell lines could not be completely confirmed in clinical trials. As these conflicting data require further research, we created a model between cell culture and the clinical need to study this problem.
Our study was based on patient-derived NSCLC xenografts in a mouse model, which revealed a high coincidence with the original tumour. Protein and messenger RNA (mRNA) expression of known resistance markers (breast cancer resistance protein (BCRP), multidrug resistance P-glycoprotein (MDR), lung cancer-related protein (LRP) and multidrug resistance protein 1 (MRP1)) were analysed by real-time polymerase chain reaction (PCR) and immunoblotting in 24 xenografts. Chemosensitivity to etoposide, carboplatin, gemcitabine, paclitaxel, cetuximab and erlotinib was determined in in vivo xenograft experiments and compared with the protein and mRNA expression of the multidrug resistance markers.
With the exception of a single correlation between chemosensitivity and mRNA expression of etoposide and bcrp (mRNA expression of BCRP), we found no significant correlation between the response rates and protein- and mRNA expression levels in our 24 xenografts. The present results indicate that in vivo expression levels of multidrug resistance proteins and their mRNAs may not play a comparable role in chemoresistance of NSCLC, as pointed out in selected tumour cell lines.
Patient-derived xenografts allow detailed investigation of therapy-related markers and their dynamic regulation in a well-standardised and clinically related way. As a consequence of our investigations, we regard multidrug resistance to be a multifactorial phenomenon, in which more factors than the markers analysed by the present study may be involved.
Copyright © 2011 European Association for Cardio-Thoracic Surgery. Published by Elsevier B.V. All rights reserved.

  • WB
  • Homo sapiens (Human)
  • Cancer Research

Not Available

In Journal of Oncology on 24 June 2009 by Rolff, J., Dorn, C., et al.

Tumor cells that are nonsensitive to anticancer drugs frequently have a multidrug resistant (MDR) phenotype. Many studies with cell lines and patient material have been done to investigate the impact of different resistance markers at protein and mRNA level in drug resistance but with contradictory outcome. In the present study, 26 well-characterised patient-derived non-small cell lung cancer xenografts were used. The known chemosensitivity to etoposide, carboplatin, gemcitabine, paclitaxel and erlotinib was compared to the protein and mRNA expression of BCRP, LRP, MDR1, and MRP1. Further, four of these xenografts were short-term treated to analyse possible regulation mechanisms after therapeutic interventions. We found a borderline correlation between the bcrp mRNA expression and the response of xenografts to etoposide. All other constitutive mRNA and protein expression levels were not correlated to any drug response and were not significantly influenced by a short term treatment. The present results indicate that the expression levels of MDR proteins and mRNA investigated do not play an important role in the chemoresistance of NSCLC in the in vivo situation.

  • WB
View this product on CiteAb