Product Citations: 142

5 images found

Abstract The Wobbler mouse is a genetic model of familial amyotrophic lateral sclerosis. Wobblers show spinal cord neurodegeneration associated with gliosis, neuroinflammation, and demyelination. Similar to human neurodegenerative diseases, Wobblers show high levels of corticosterone in blood and the nervous system. A role for glucocorticoids in neuropathology is suggested by the observation that pathological signs attenuate with treatment with glucocorticoid receptor (GR) antagonists/modulators. In the present study, we demonstrated in 5-month-old clinically afflicted Wobbler mice that the selective GR modulator CORT125329 decreased motoneuron degeneration, astro- and microgliosis, and levels of pro-inflammatory factors (HMGB1, toll-like receptor 4, tumor necrosis factorFα, and its receptor). In addition, CORT125329 increased the acetylcholine-producing enzyme choline acetyltransferase, the neurotrophin brain-derived neurotrophic factor, and their cellular colocalization. Furthermore, the increased oligodendrocyte number and a healthier myelin ultrastructure are consistent with the enhanced axonal myelination after CORT125329 treatment. Finally, the high expression of immunoreactive protein and mRNA levels of acquaporin4 in Wobblers was decreased by CORT125329 treatment, implying this water channel is a glucocorticoid target involved in neuropathology. The beneficial effects of CORT125329 correlated with enhanced motor behavioral performance and trophic changes of the forelimbs. In conclusion our results support further preclinical and clinical studies with GR modulators in sporadic amyotrophic lateral sclerosis.

  • Neuroscience

Forced MyD88 signaling in microglia impacts the production and survival of regenerated retinal neurons.

In Frontiers in Cell and Developmental Biology on 5 December 2024 by Rumford, J. E., Grieshaber, A., et al.

Inflammation and microglia appear to be key factors influencing the outcome of retinal regeneration following acute retinal damage. Despite such findings, direct connection of microglia-specific inflammatory factors as drivers of regenerative responses in the retina are still not defined, and intracellular pathways activated to stimulate such signals from microglia are currently unknown. We became interested in MyD88 regulation in microglia because transcriptomic datasets suggest myd88 could be regulated temporally in zebrafish microglia responding to damage in the central nervous system. MyD88 is an intracellular molecular adaptor that initiates signaling cascades downstream of several innate immune receptors, and probably most well-known for inducing gene expression of pro-inflammatory factors. Using zebrafish, which spontaneously regenerate retinal neurons after acute retinal damage, we studied the effects of overactivation of MyD88 signaling in microglia and macrophages on the Müller glia-mediated regenerative response. Our results indicate that increased MyD88 signaling in microglia/macrophages impacts the initial response of Müller glia entering a regenerative response after acute, neurotoxin-induced retinal damage to inner retinal neurons. In addition, increased MyD88 signaling in microglia/macrophages resulted in reduced survival of inner retinal neurons in regenerated retinas. This work supports the idea that temporal control of inflammatory signaling is a key component in the production of MG-derived progenitors yet further indicates that such control is important for differentiation and survival of regenerated neurons.
Copyright © 2024 Rumford, Grieshaber, Lewiston, Reed, Long and Mitchell.

  • IHC-IF
  • Neuroscience

The co-expression of the depolarizing and hyperpolarizing mechanosensitive ion channels in mammalian retinal neurons.

In Frontiers in Medicine on 28 November 2024 by Pang, V. Y., Yang, Z., et al.

The elevation of the intraocular and extraocular pressures is associated with various visual conditions, including glaucoma and traumatic retinal injury. The retina expresses mechanosensitive channels (MSCs), but the role of MSCs in retinal physiology and pathologies has been unclear.
Using immunocytochemistry, confocal microscopy, and patch-clamp recording techniques, we studied the co-expression of K+-permeable (K-MSCs) TRAAK and big potassium channel BK with the epithelial sodium channel ENaC and transient receptor potential channel vanilloid TPRV4 and TRPV2 favorably permeable to Ca2+ than Na+ (together named N-MSCs), and TRPV4 activity in the mouse retina.
TRAAK immunoreactivity (IR) was mainly located in Müller cells. Photoreceptor outer segments (OSs) expressed BK and ENaCα intensively and TRAAK, TRPV2, and TRPV4 weakly. Somas and axons of retinal ganglion cells (RGCs) retrograde-identified clearly expressed ENaCα, TRPV4, and TRPV2 but lacked TRAAK and BK. Rod bipolar cells (RBCs) showed TRPV4-IR in somas and BK-IR in axonal globules. Horizontal cells were BK-negative, and some cone BCs lacked TRPV4-IR. TRPV4 agonist depolarized RGCs, enhanced spontaneous spikes and excitatory postsynaptic currents, reduced the visual signal reliability (VSR = 1-noise/signal) by ~50%, and resulted in ATP crisis, which could inactivate voltage-gated sodium channels in RGCs.
Individual neurons co-express hyperpolarizing K-MSCs with depolarizing N-MSCs to counterbalance the pressure-induced excitation, and the level of K-MSCs relative to N-MSCs (RK/N ratio) is balanced in the outer retina but low in RGCs, bringing out novel determinants for the pressure vulnerability of retinal neurons and new targets for clinical interventions.
Copyright © 2024 Pang, Yang, Wu and Pang.

  • Neuroscience

Loss of mitochondrial enzyme GPT2 leads to reprogramming of synaptic glutamate metabolism.

In Molecular Brain on 27 November 2024 by Baytas, O., Davidson, S. M., et al.

Recessive loss-of-function mutations in the mitochondrial enzyme Glutamate Pyruvate Transaminase 2 (GPT2) cause intellectual disability in children. Given this cognitive disorder, and because glutamate metabolism is tightly regulated to sustain excitatory neurotransmission, here we investigate the role of GPT2 in synaptic function. GPT2 catalyzes a reversible reaction interconverting glutamate and pyruvate with alanine and alpha-ketoglutarate, a TCA cycle intermediate; thereby, GPT2 may play an important role in linking mitochondrial tricarboxylic acid (TCA) cycle with synaptic transmission. In mouse brain, we find that GPT2 is enriched in mitochondria of synaptosomes (isolated synaptic terminals). Loss of Gpt2 in mouse appears to lead to reprogramming of glutamate and glutamine metabolism, and to decreased glutamatergic synaptic transmission. Whole-cell patch-clamp recordings in pyramidal neurons of CA1 hippocampal slices from Gpt2-null mice reveal decreased excitatory post-synaptic currents (mEPSCs) without changes in mEPSC frequency, or importantly, changes in inhibitory post-synaptic currents (mIPSCs). Additional evidence of defective glutamate release included reduced levels of glutamate released from Gpt2-null synaptosomes measured biochemically. Glutamate release from synaptosomes was rescued to wild-type levels by alpha-ketoglutarate supplementation. Additionally, we observed evidence of altered metabolism in isolated Gpt2-null synaptosomes: decreased TCA cycle intermediates, and increased glutamate dehydrogenase activity. Notably, alterations in the TCA cycle and the glutamine pool were alleviated by alpha-ketoglutarate supplementation. In conclusion, our data support a model whereby GPT2 mitochondrial activity may contribute to glutamate availability in pre-synaptic terminals, thereby highlighting potential interactions between pre-synaptic mitochondrial metabolism and synaptic transmission.
© 2024. The Author(s).

  • WB
  • Mus musculus (House mouse)
  • Biochemistry and Molecular biology
  • Cell Biology

Downregulation of chloride voltage-gated channel 7 contributes to hyperalgesia following spared nerve injury.

In The Journal of Biological Chemistry on 1 October 2024 by Cai, Y., Li, J., et al.

Alterations in anion balance potential, along with the involvement of cation-chloride cotransporters, play pivotal roles in the development of hyperalgesia after peripheral nerve injury. Chloride voltage-gated channel seven (CLCN7) is the predominant member of the CLC protein family. Investigations on CLCN7 have focused primarily on its involvement in osteosclerosis and lysosomal storage disorders; nevertheless, its contribution to neuropathic pain has not been determined. In this investigation, we noted high expression of CLCN7 in neurons situated within the spinal dorsal horns and dorsal root ganglions (DRGs). Immunofluorescence analysis revealed that CLCN7 was predominantly distributed among IB4-positive and CGRP-positive neurons. Furthermore, the expression of CLCN7 was observed to be mainly reduced in neurons within the spinal dorsal horns and in small- and medium-sized neurons located in the DRGs of spared nerve injury mice. Knockdown of CLCN7 via siRNA in the DRGs resulted in increased mechanical and thermal hyperalgesia in naïve mice. Furthermore, the excitability of cultured DRG neurons in vitro was augmented upon treatment with CLCN7 siRNA. These findings suggested that CLCN7 downregulation following SNI was crucial for the manifestation of mechanical and thermal hyperalgesia, highlighting potential targeting strategies for treating neuropathic pain.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.

  • Biochemistry and Molecular biology
  • Neuroscience
View this product on CiteAb