Product Citations: 3

Semaphorin 4D (Sema4D) is highly expressed in a variety of tumors and is associated with high invasion, poor prognosis and poor therapeutic response. However, the expression and role of Sema4D in leukemia remains unclear. The present study investigated the expression of Sema4D in pediatric leukemia and its effects in leukemia cells. The results demonstrated that Sema4D protein was highly expressed in peripheral blood mononuclear cells of patients with pediatric leukemia, and high levels of soluble Sema4D were also observed in the plasma of these patients. Sema4D knockdown induced cell cycle arrest in G0/G1 phase, inhibited proliferation and promoted apoptosis in BALL‑1 cells, while Sema4D overexpression exhibited the opposite effect. In Jurkat cells, Sema4D knockdown inhibited proliferation and promoted apoptosis, while Sema4D overexpression decreased the abundance of the cells in the G0/G1 phase of the cell cycle and promoted proliferation. Sema4D overexpression also increased the migratory capacity of Jurkat cells and the invasive capacity of BALL‑1 cells. The phosphorylation level of PI3K was decreased in both Sema4D knocked‑down Jurkat and BALL‑1 cells, and the phosphorylation level of ERK was decreased in Sema4D knocked‑down BALL‑1 cells. The phosphorylation levels of PI3K, ERK and AKT were elevated in patients with pediatric leukemia, and were correlated to the increased Sema4D expression. Sema4D overexpression was associated with a shorter overall survival in patients with acute myeloid leukemia. Overall, the results of the present study indicated that Sema4D serves an important role in leukemia development by activating PI3K/AKT and ERK signaling, and it may be used as a potential target for the diagnosis and treatment of leukemia.

  • WB
  • Homo sapiens (Human)
  • Cancer Research

Osteosarcomas are sarcomas of the bone, derived from osteoblasts or their precursors, with a high propensity to metastasize. Osteosarcoma is associated with massive genomic instability, making it problematic to identify driver genes using human tumors or prototypical mouse models, many of which involve loss of Trp53 function. To identify the genes driving osteosarcoma development and metastasis, we performed a Sleeping Beauty (SB) transposon-based forward genetic screen in mice with and without somatic loss of Trp53. Common insertion site (CIS) analysis of 119 primary tumors and 134 metastatic nodules identified 232 sites associated with osteosarcoma development and 43 sites associated with metastasis, respectively. Analysis of CIS-associated genes identified numerous known and new osteosarcoma-associated genes enriched in the ErbB, PI3K-AKT-mTOR and MAPK signaling pathways. Lastly, we identified several oncogenes involved in axon guidance, including Sema4d and Sema6d, which we functionally validated as oncogenes in human osteosarcoma.

  • IHC
  • Cancer Research
  • Genetics

Plexin-B1 mutations in prostate cancer.

In Proceedings of the National Academy of Sciences of the United States of America on 27 November 2007 by Wong, O. G., Nitkunan, T., et al.

Semaphorins are a large class of secreted or membrane-associated proteins that act as chemotactic cues for cell movement via their transmembrane receptors, plexins. We hypothesized that the function of the semaphorin signaling pathway in the control of cell migration could be harnessed by cancer cells during invasion and metastasis. We now report 13 somatic missense mutations in the cytoplasmic domain of the Plexin-B1 gene. Mutations were found in 89% (8 of 9) of prostate cancer bone metastases, in 41% (7 of 17) of lymph node metastases, and in 46% (41 of 89) of primary cancers. Forty percent of prostate cancers contained the same mutation. Overexpression of the Plexin-B1 protein was found in the majority of primary tumors. The mutations hinder Rac and R-Ras binding and R-RasGAP activity, resulting in an increase in cell motility, invasion, adhesion, and lamellipodia extension. These results identify a key role for Plexin-B1 and the semaphorin signaling pathway it mediates in prostate cancer.

  • IHC
  • Cancer Research
View this product on CiteAb