Product Citations: 37

Cabozantinib is a multi-kinase inhibitor targeting MET, AXL, and VEGFR2, and has been approved for use in multiple malignancies. The means by which Cabozantinib acts to target colorectal cancer (CRC) cells remains poorly understood, and we sought to investigate how this drug disrupts cell growth in CRC cells and how it interacts to enhance the efficacy of other chemotherapeutic agents. In this study, we found that Cabozantinib activated a p65-dependent signaling pathway in response to both inhibition of AKT and activation of glycogen synthase kinase 3β (GSK3β), leading to upregulation of PUMA in CRC cells regardless of p53 activity. PUMA upregulation facilitates CRC apoptosis in response to Cabozantinib, which also acts synergistically with the chemotherapeutic agents Cetuximab and 5-FU to induce robust apoptosis in a PUMA-dependent manner. Eliminating PUMA expression ablated this apoptosis induced by Cabozantinib in xenograft mouse model. Our findings revealed that Cabozantinib acts to drive CRC cells apoptosis via a PUMA-dependent mechanism, thus identifying PUMA expression as a potential predictor of Cabozantinib efficacy and a potential novel therapeutic target.

  • WB
  • Cancer Research

Eomes broadens the scope of CD8 T-cell memory by inhibiting apoptosis in cells of low affinity.

In PLoS Biology on 1 March 2020 by Kavazović, I., Han, H., et al.

The memory CD8 T-cell pool must select for clones that bind immunodominant epitopes with high affinity to efficiently counter reinfection. At the same time, it must retain a level of clonal diversity to allow recognition of pathogens with mutated epitopes. How the level of diversity within the memory pool is controlled is unclear, especially in the context of a selective drive for antigen affinity. We find that preservation of clones that bind the activating antigen with low affinity depends on expression of the transcription factor Eomes in the first days after antigen encounter. Eomes is induced at low activating signal strength and directly drives transcription of the prosurvival protein Bcl-2. At higher signal intensity, T-bet is induced which suppresses Bcl-2 and causes a relative survival advantage for cells of low affinity. Clones activated with high-affinity antigen form memory largely independent of Eomes and have a proliferative advantage over clones that bind the same antigen with low affinity. This causes high-affinity clones to prevail in the memory pool, despite their relative survival deficit. Genetic or therapeutic targeting of the Eomes/Bcl-2 axis reduces the clonal diversity of the memory pool, which diminishes its ability to respond to pathogens carrying mutations in immunodominant epitopes. Thus, we demonstrate on a molecular level how sufficient diversity of the memory pool is established in an environment of affinity-based selection.

  • Immunology and Microbiology

Bcl-2 inhibitors enhance FGFR inhibitor-induced mitochondrial-dependent cell death in FGFR2-mutant endometrial cancer.

In Molecular Oncology on 1 April 2019 by Packer, L. M., Stehbens, S. J., et al.

Endometrial cancer is the most commonly diagnosed gynaecological malignancy. Unfortunately, 15-20% of women demonstrate persistent or recurrent tumours that are refractory to current chemotherapies. We previously identified activating mutations in fibroblast growth factor receptor 2 (FGFR2) in 12% (stage I/II) to 17% (stage III/IV) endometrioid ECs and found that these mutations are associated with shorter progression-free and cancer-specific survival. Although FGFR inhibitors are undergoing clinical trials for treatment of several cancer types, little is known about the mechanism by which they induce cell death. We show that treatment with BGJ398, AZD4547 and PD173074 causes mitochondrial depolarization, cytochrome c release and impaired mitochondrial respiration in two FGFR2-mutant EC cell lines (AN3CA and JHUEM2). Despite this mitochondrial dysfunction, we were unable to detect caspase activation following FGFR inhibition; in addition, the pan-caspase inhibitor Z-VAD-FMK was unable to prevent cell death, suggesting that the cell death is caspase-independent. Furthermore, while FGFR inhibition led to an increase in LC3 puncta, treatment with bafilomycin did not further increase lipidated LC3, suggesting that FGFR inhibition led to a block in autophagosome degradation. We confirmed that cell death is mitochondrial-dependent as it can be blocked by overexpression of Bcl-2 and/or Bcl-XL. Importantly, we show that combining FGFR inhibitors with the BH3 mimetics ABT737/ABT263 markedly increased cell death in vitro and is more effective than BGJ398 alone in vivo, where it leads to marked tumour regression. This work may have implications for the design of clinical trials to treat a wide range of patients with FGFR-dependent malignancies.
© 2018 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  • WB
  • Homo sapiens (Human)
  • Cancer Research
  • Cell Biology

Idelalisib promotes Bim-dependent apoptosis through AKT/FoxO3a in hepatocellular carcinoma.

In Cell Death & Disease on 17 September 2018 by Yue, D. & Sun, X.

Idelalisib, a selective PI3Kδ inhibitor, has been approved by the FDA for chronic lymphocytic leukemia/small lymphocytic lymphoma treatment and for follicular lymphoma treatment when combined with rituximab. However, the mechanisms of effective action of idelalisib in hepatocellular carcinoma (HCC) remain unclear. In the current study, we aimed to investigate how idelalisib inhibits the growth of HCC cells and enhances the effects of other chemotherapeutic drugs. Our results show that idelalisib treatment promotes Bim induction in HCC via the FoxO3a pathway following PI3K/AKT inactivation. Moreover, our results show that Bim is required for idelalisib-mediated apoptosis in HCC. Idelalisib also synergizes with sorafenib or doxorubicin to induce significant apoptosis in HCC, and Bim is also necessary for the induction of apoptosis by cotreatment. Furthermore, a xenograft experiment reveals that the Bim deficiency abolishes apoptosis and antitumor effects of idelalisib in vivo. In summary, our results indicate a key role of Bim in mediating the antitumor effects of idelalisib in HCC. Our results also support the clinical significance of the drug.

  • WB
  • Cancer Research
  • Cell Biology

Heat Shock Protein 70 (Hsp70) Suppresses RIP1-Dependent Apoptotic and Necroptotic Cascades.

In Molecular Cancer Research on 1 January 2018 by Srinivasan, S. R., Cesa, L. C., et al.

Hsp70 is a molecular chaperone that binds to "client" proteins and protects them from protein degradation. Hsp70 is essential for the survival of many cancer cells, but it is not yet clear which of its clients are involved. Using structurally distinct chemical inhibitors, we found that many of the well-known clients of the related chaperone, Hsp90, are not strikingly responsive to Hsp70 inhibition. Rather, Hsp70 appeared to be important for the stability of the RIP1 (RIPK1) regulators: cIAP1/2 (BIRC1 and BIRC3), XIAP, and cFLIPS/L (CFLAR). These results suggest that Hsp70 limits apoptosis and necroptosis pathways downstream of RIP1. Consistent with this model, MDA-MB-231 breast cancer cells treated with Hsp70 inhibitors underwent apoptosis, while cotreatment with z-VAD.fmk switched the cell death pathway to necroptosis. In addition, cell death in response to Hsp70 inhibitors was strongly suppressed by RIP1 knockdown or inhibitors. Thus, these data indicate that Hsp70 plays a previously unrecognized and important role in suppressing RIP1 activity.Implications: These findings clarify the role of Hsp70 in prosurvival signaling and suggest IAPs as potential new biomarkers for Hsp70 inhibition. Mol Cancer Res; 16(1); 58-68. ©2017 AACR.
©2017 American Association for Cancer Research.

  • Homo sapiens (Human)
  • Cancer Research
View this product on CiteAb