Product Citations: 470

A biallelic variant in GORASP1 causes a novel Golgipathy with glycosylation and mitotic defects.

In Life Science Alliance on 1 April 2025 by Lebon, S., Bruneel, A., et al.

GRASP65 is a Golgi-associated peripheral protein encoded by the GORASP1 gene and required for Golgi cisternal stacking in vitro. A key role of GRASP65 in the regulation of cell division has also been suggested. However, depletion of GRASP65 in mice has little effect on the Golgi structure and the gene has not been associated with any human phenotype to date. Here, we report the identification of the first human pathogenic variant of GORASP1 (c.1170_1171del; p.Asp390Glufs*18) in a patient combining a neurodevelopmental disorder with neurosensory, neuromuscular, and skeletal abnormalities. Functional analysis revealed that the variant leads to a total absence of GRASP65. The structure of the Golgi apparatus did not show fragmentation, but glycosylation anomalies such as hyposialylation were detected. Mitosis analyses revealed an excess of prometaphases and metaphases with polar chromosomes, suggesting a delay in the cell cycle. These phenotypes were recapitulated in RPE cells in which a similar mutation was introduced by CRISPR/Cas9. These results indicate that loss of GRASP65 in humans causes a novel Golgipathy associated with defects in glycosylation and mitotic progression.
© 2025 Lebon et al.

  • WB
  • Homo sapiens (Human)
  • Cell Biology

FUT10 and FUT11 are protein O-fucosyltransferases that modify protein EMI domains.

In Nature Chemical Biology on 1 April 2025 by Hao, H., Yuan, Y., et al.

O-Fucosylation plays crucial roles in various essential biological events. Alongside the well-established O-fucosylation of epidermal growth factor-like repeats by protein O-fucosyltransferase 1 (POFUT1) and thrombospondin type 1 repeats by POFUT2, we recently identified a type of O-fucosylation on the elastin microfibril interface (EMI) domain of Multimerin-1 (MMRN1). Here, using AlphaFold2 screens, co-immunoprecipitation, enzymatic assays combined with mass spectrometric analysis and CRISPR-Cas9 knockouts, we demonstrate that FUT10 and FUT11, originally annotated in UniProt as α1,3-fucosyltransferases, are actually POFUTs responsible for modifying EMI domains; thus, we renamed them as POFUT3 and POFUT4, respectively. Like POFUT1/2, POFUT3/4 function in the endoplasmic reticulum, require folded domain structures for modification and participate in a non-canonical endoplasmic reticulum quality control pathway for EMI domain-containing protein secretion. This finding expands the O-fucosylation repertoire and provides an entry point for further exploration in this emerging field of O-fucosylation.
© 2025. The Author(s).

Mitochondria are positioned at dendritic branch induction sites, a process requiring rhotekin2 and syndapin I.

In Nature Communications on 10 March 2025 by Tröger, J., Dahlhaus, R., et al.

Proper neuronal development, function and survival critically rely on mitochondrial functions. Yet, how developing neurons ensure spatiotemporal distribution of mitochondria during expansion of their dendritic arbor remained unclear. We demonstrate the existence of effective mitochondrial positioning and tethering mechanisms during dendritic arborization. We identify rhotekin2 as outer mitochondrial membrane-associated protein that tethers mitochondria to dendritic branch induction sites. Rhotekin2-deficient neurons failed to correctly position mitochondria at these sites and also lacked the reduction in mitochondrial dynamics observed at wild-type nascent dendritic branch sites. Rhotekin2 hereby serves as important anchor for the plasma membrane-binding and membrane curvature-inducing F-BAR protein syndapin I (PACSIN1). Consistently, syndapin I loss-of-function phenocopied the rhotekin2 loss-of-function phenotype in mitochondrial positioning at dendritic branch induction sites. The finding that rhotekin2 deficiency impaired dendritic branch induction and that a syndapin binding-deficient rhotekin2 mutant failed to rescue this phenotype highlighted the physiological importance of rhotekin2 functions for neuronal network formation.
© 2025. The Author(s).

  • WB
  • Cell Biology
  • Immunology and Microbiology

Non-centrosomal microtubule-organizing centers (ncMTOCs) are important for the function of differentiated cells. Yet, ncMTOCs are poorly understood. Previously, several components of the nuclear envelope (NE)-MTOC have been identified. However, the temporal localization of MTOC proteins and Golgi to the NE and factors controlling the switch from a centrosomal MTOC to a ncMTOC remain elusive. Here, we utilized the in vitro differentiation of C2C12 mouse myoblasts as a model system to study NE-MTOC formation. We find based on longitudinal co-immunofluorescence staining analyses that MTOC proteins are recruited in a sequential and gradual manner to the NE. AKAP9 localizes with the Golgi to the NE after the recruitment of MTOC proteins. Moreover, siRNA-mediated depletion experiments revealed that Mbnl2 is required for proper NE-MTOC formation by regulating the expression levels of AKAP6β. Finally, Mbnl2 depletion affects Pcnt isoform expression. Taken together, our results shed light on how mammals post-transcriptionally control the switch from a centrosomal MTOC to an NE-MTOC and identify Mbnl2 as a novel modulator of ncMTOCs in skeletal muscle cells.

  • Cell Biology

Elucidating subcellular architecture and dynamics at isotropic 100-nm resolution with 4Pi-SIM.

In Nature Methods on 1 February 2025 by Ouyang, Z., Wang, Q., et al.

Three-dimensional structured illumination microscopy (3D-SIM) provides excellent optical sectioning and doubles the resolution in all dimensions compared with wide-field microscopy. However, its much lower axial resolution results in blurred fine details in that direction and overall image distortion. Here we present 4Pi-SIM, a substantial revamp of I5S that synergizes 3D-SIM with interferometric microscopy to achieve isotropic optical resolution through interference in both the illumination and detection wavefronts. We evaluate the performance of 4Pi-SIM by imaging various subcellular structures across different cell types with high fidelity. Furthermore, we demonstrate its capability by conducting time-lapse volumetric imaging over hundreds of time points, achieving a 3D resolution of approximately 100 nm. Additionally, we illustrate its ability to simultaneously image in two colors and capture the rapid interactions between closely positioned organelles in three dimensions. These results underscore the great potential of 4Pi-SIM for elucidating subcellular architecture and revealing dynamic behaviors at the nanoscale.
© 2024. The Author(s).

View this product on CiteAb