Product Citations: 20

1 image found

Epithelial-to-mesenchymal transition (EMT) is the underlying mechanism for tumor metastasis and shows the metastatic potential of tumor cells. Although the transcriptional regulation of EMT has been well studied, the role of alternative splicing (AS) regulation in EMT remains largely uncharacterized. The rapid accumulation of RNA-seq datasets has provided the opportunities for developing computational methods to associate mRNA isoform variations with EMT. In this study, we propose regularization models to identify significant AS events during EMT. Our experimental results confirm that the predicted AS events are closely related to apoptosis, focal adhesion-invadopodium shift and tight junction formation that are essential during EMT. Therefore, our study highlights the broad role of posttranscriptional regulation during EMT and identifies key subsets of AS events serving as distinct regulatory nodes.
© 2023 Northeastern University, Shenyang, China.

  • Homo sapiens (Human)

Targeting myeloid cell coagulation signaling blocks MAP kinase/TGF-β1-driven fibrotic remodeling in ischemic heart failure.

In The Journal of Clinical Investigation on 15 February 2023 by Garlapati, V., Molitor, M., et al.

Despite major advances in acute interventions for myocardial infarction (MI), adverse cardiac remodeling and excess fibrosis after MI causing ischemic heart failure (IHF) remain a leading cause of death worldwide. Here we identify a profibrotic coagulation signaling pathway that can be targeted for improved cardiac function following MI with persistent ischemia. Quantitative phosphoproteomics of cardiac tissue revealed an upregulated mitogen-activated protein kinase (MAPK) pathway in human IHF. Intervention in this pathway with trametinib improves myocardial function and prevents fibrotic remodeling in a murine model of non-reperfused MI. MAPK activation in MI requires myeloid cell signaling of protease-activated receptor 2 linked to the cytoplasmic domain of the coagulation initiator tissue factor (TF). They act upstream of pro-oxidant NOX2 NADPH oxidase, ERK1/2 phosphorylation, and activation of profibrotic TGF-β1. Specific targeting with the TF inhibitor nematode anticoagulant protein c2 (NAPc2) starting 1 day after established experimental MI averts IHF. Increased TF cytoplasmic domain phosphorylation in circulating monocytes from patients with subacute MI identifies a potential thromboinflammatory biomarker reflective of increased risk for IHF and suitable for patient selection to receive targeted TF inhibition therapy.

  • WB
  • Homo sapiens (Human)
  • Cardiovascular biology

Apigenin restores endothelial function by ameliorating oxidative stress, reverses aortic stiffening, and mitigates vascular inflammation with aging.

In American Journal of Physiology - Heart and Circulatory Physiology on 1 July 2021 by Clayton, Z. S., Hutton, D. A., et al.

We assessed the efficacy of oral supplementation with the flavanoid apigenin on arterial function during aging and identified critical mechanisms of action. Young (6 mo) and old (27 mo) C57BL/6N mice (model of arterial aging) consumed drinking water containing vehicle (0.2% carboxymethylcellulose; 10 young and 7 old) or apigenin (0.5 mg/mL in vehicle; 10 young and 9 old) for 6 wk. In vehicle-treated animals, isolated carotid artery endothelium-dependent dilation (EDD), bioassay of endothelial function, was impaired in old versus young (70% ± 9% vs. 92% ± 1%, P < 0.0001) due to reduced nitric oxide (NO) bioavailability. Old mice had greater arterial reactive oxygen species (ROS) production and oxidative stress (higher nitrotyrosine) associated with greater nicotinamide adenine dinucleotide phosphate oxidase (oxidant enzyme) and lower superoxide dismutase 1 and 2 (antioxidant enzymes); ex vivo administration of Tempol (antioxidant) restored EDD to young levels, indicating ROS-mediated suppression of EDD. Old animals also had greater aortic stiffness as indicated by higher aortic pulse wave velocity (PWV, 434 ± 9 vs. 346 ± 5 cm/s, P < 0.0001) due to greater intrinsic aortic wall stiffness associated with lower elastin levels and higher collagen, advanced glycation end products (AGEs), and proinflammatory cytokine abundance. In old mice, apigenin restored EDD (96% ± 2%) by increasing NO bioavailability, normalized arterial ROS, oxidative stress, and antioxidant expression, and abolished ROS inhibition of EDD. Moreover, apigenin prevented foam cell formation in vitro (initiating step in atherosclerosis) and mitigated age-associated aortic stiffening (PWV 373 ± 5 cm/s) by normalizing aortic intrinsic wall stiffness, collagen, elastin, AGEs, and inflammation. Thus, apigenin is a promising therapeutic for arterial aging.NEW & NOTEWORTHY Our study provides novel evidence that oral apigenin supplementation can reverse two clinically important indicators of arterial dysfunction with age, namely, vascular endothelial dysfunction and large elastic artery stiffening, and prevents foam cell formation in an established cell culture model of early atherosclerosis. Importantly, our results provide extensive insight into the biological mechanisms of apigenin action, including increased nitric oxide bioavailability, normalization of age-related increases in arterial ROS production and oxidative stress, reversal of age-associated aortic intrinsic mechanical wall stiffening and adverse remodeling of the extracellular matrix, and suppression of vascular inflammation. Given that apigenin is commercially available as a dietary supplement in humans, these preclinical findings provide the experimental basis for future translational studies assessing the potential of apigenin to treat arterial dysfunction and reduce cardiovascular disease risk with aging.

  • WB
  • Mus musculus (House mouse)
  • Endocrinology and Physiology
  • Immunology and Microbiology

Clonorchis sinensis, a high-risk pathogenic human liver fluke, provokes various hepatobiliary complications, including epithelial hyperplasia, inflammation, periductal fibrosis, and even cholangiocarcinogenesis via direct contact with worms and their excretory-secretory products (ESPs). These pathological changes are strongly associated with persistent increases in free radical accumulation, leading to oxidative stress-mediated lesions. The present study investigated C. sinensis infection- and/or carcinogen N-nitrosodimethylamine (NDMA)-associated fibrosis in cell culture and animal models. The treatment of human cholangiocytes (H69 cells) with ESPs or/and NDMA increased reactive oxidative species (ROS) generation via the activation of NADPH oxidase (NOX), resulting in augmented expression of fibrosis-related proteins. These increased expressions were markedly attenuated by preincubation with a NOX inhibitor (diphenyleneiodonium chloride) or an antioxidant (N-acetylcysteine), indicating the involvement of excessive NOX-dependent ROS formation in periductal fibrosis. The immunoreactive NOX subunits, p47phox and p67phox, were observed in the livers of mice infected with C. sinensis and both infection plus NDMA, concomitant with collagen deposition and immunoreactive fibronectin elevation. Staining intensities are proportional to lesion severity and infection duration or/and NDMA administration. Thus, excessive ROS formation via NOX overactivation is a detrimental factor for fibrogenesis during liver fluke infection and exposure to N-nitroso compounds.

  • WB
  • Immunology and Microbiology

Mycobacterium tuberculosis PPE2 Protein Interacts with p67phox and Inhibits Reactive Oxygen Species Production.

In The Journal of Immunology on 1 September 2019 by Srivastava, S., Battu, M. B., et al.

Mycobacterium tuberculosis employs defense mechanisms to protect itself from reactive oxygen species (ROS)-mediated cytotoxicity inside macrophages. In the current study, we found that a secretory protein of M. tuberculosis PPE2 disrupted the assembly of NADPH oxidase complex. PPE2 inhibited NADPH oxidase-mediated ROS generation in RAW 264.7 macrophages and peritoneal macrophages from BALB/c mice. PPE2 interacted with the cytosolic subunit of NADPH oxidase, p67phox, and prevented translocation of p67phox and p47phox to the membrane, resulting in decreased NADPH oxidase activity. Trp236 residue present in the SH3-like domain of PPE2 was found to be critical for its interaction with p67phox Trp236Ala mutant of PPE2 did not interact with p67phox and thereby did not affect ROS generation. M. tuberculosis expressing PPE2 and PPE2-null mutants complemented with PPE2 survived better than PPE2-null mutants in infected RAW 264.7 macrophages. Altogether, this study suggests that PPE2 inhibits NADPH oxidase-mediated ROS production to favor M. tuberculosis survival in macrophages. The findings that M. tuberculosis PPE2 protein is involved in the modulation of oxidative response in macrophages will help us in improving our knowledge of host-pathogen interactions and the application of better therapeutics against tuberculosis.
Copyright © 2019 by The American Association of Immunologists, Inc.

  • Immunology and Microbiology
View this product on CiteAb