Product Citations: 18

PI(3,4)P2-mediated cytokinetic abscission prevents early senescence and cataract formation.

In Science on 10 December 2021 by Gulluni, F., Prever, L., et al.

Cytokinetic membrane abscission is a spatially and temporally regulated process that requires ESCRT (endosomal sorting complexes required for transport)–dependent control of membrane remodeling at the midbody, a subcellular organelle that defines the cleavage site. Alteration of ESCRT function can lead to cataract, but the underlying mechanism and its relation to cytokinesis are unclear. We found a lens-specific cytokinetic process that required PI3K-C2α (phosphatidylinositol-4-phosphate 3-kinase catalytic subunit type 2α), its lipid product PI(3,4)P2 (phosphatidylinositol 3,4-bisphosphate), and the PI(3,4)P2–binding ESCRT-II subunit VPS36 (vacuolar protein-sorting-associated protein 36). Loss of each of these components led to impaired cytokinesis, triggering premature senescence in the lens of fish, mice, and humans. Thus, an evolutionarily conserved pathway underlies the cell type–specific control of cytokinesis that helps to prevent early onset cataract by protecting from senescence.

PI3KC2β inactivation stabilizes VE-cadherin junctions and preserves vascular integrity.

In EMBO Reports on 4 June 2021 by Anquetil, T., Solinhac, R., et al.

Endothelium protection is critical, because of the impact of vascular leakage and edema on pathological conditions such as brain ischemia. Whereas deficiency of class II phosphoinositide 3-kinase alpha (PI3KC2α) results in an increase in vascular permeability, we uncover a crucial role of the beta isoform (PI3KC2β) in the loss of endothelial barrier integrity following injury. Here, we studied the role of PI3KC2β in endothelial permeability and endosomal trafficking in vitro and in vivo in ischemic stroke. Mice with inactive PI3KC2β showed protection against vascular permeability, edema, cerebral infarction, and deleterious inflammatory response. Loss of PI3KC2β in human cerebral microvascular endothelial cells stabilized homotypic cell-cell junctions by increasing Rab11-dependent VE-cadherin recycling. These results identify PI3KC2β as a potential new therapeutic target to prevent aggravating lesions following ischemic stroke.
© 2021 The Authors.

Downregulation of class II phosphoinositide 3-kinase PI3K-C2β delays cell division and potentiates the effect of docetaxel on cancer cell growth.

In Journal of Experimental & Clinical Cancer Research : CR on 21 November 2019 by Cisse, O., Quraishi, M., et al.

Alteration of signalling pathways regulating cell cycle progression is a common feature of cancer cells. Several drugs targeting distinct phases of the cell cycle have been developed but the inability of many of them to discriminate between normal and cancer cells has strongly limited their clinical potential because of their reduced efficacy at the concentrations used to limit adverse side effects. Mechanisms of resistance have also been described, further affecting their efficacy. Identification of novel targets that can potentiate the effect of these drugs or overcome drug resistance can provide a useful strategy to exploit the anti-cancer properties of these agents to their fullest.
The class II PI3K isoform PI3K-C2β was downregulated in prostate cancer PC3 cells and cervical cancer HeLa cells using selective siRNAs and the effect on cell growth was determined in the absence or presence of the microtubule-stabilizing agent/anti-cancer drug docetaxel. Mitosis progression was monitored by time-lapse microscopy. Clonogenic assays were performed to determine the ability of PC3 and HeLa cells to form colonies upon PI3K-C2β downregulation in the absence or presence of docetaxel. Cell multi-nucleation was assessed by immunofluorescence. Tumour growth in vivo was assessed using a xenograft model of PC3 cells upon PI3K-C2β downregulation and in combination with docetaxel.
Downregulation of PI3K-C2β delays mitosis progression in PC3 and HeLa cells, resulting in reduced ability to form colonies in clonogenic assays in vitro. Compared to control cells, PC3 cells lacking PI3K-C2β form smaller and more compact colonies in vitro and they form tumours more slowly in vivo in the first weeks after cells implant. Stable and transient PI3K-C2β downregulation potentiates the effect of low concentrations of docetaxel on cancer cell growth. Combination of PI3K-C2β downregulation and docetaxel almost completely prevents colonies formation in clonogenic assays in vitro and strongly inhibits tumour growth in vivo.
These data reveal a novel role for the class II PI3K PI3K-C2β during mitosis progression. Furthermore, data indicate that blockade of PI3K-C2β might represent a novel strategy to potentiate the effect of docetaxel on cancer cell growth.

  • WB
  • Cancer Research

Rab11 activity and PtdIns(3)P turnover removes recycling cargo from endosomes.

In Nature Chemical Biology on 1 August 2018 by Campa, C. C., Margaria, J. P., et al.

Directional transport of recycling cargo from early endosomes (EE) to the endocytic recycling compartment (ERC) relies on phosphatidylinositol 3-phosphate (PtdIns(3)P) hydrolysis and activation of the small GTPase Rab11. However, how these events are coordinated is yet unclear. By using a novel genetically-encoded FRET biosensor for Rab11, we report that generation of endosomal PtdIns(3)P by the clathrin-binding phosphoinositide 3-kinase class 2 alpha (PI3K-C2α) controls the activation of Rab11. Active Rab11, in turn, prompts the recruitment of the phosphatidylinositol 3-phosphatase myotubularin 1 (MTM1), eventually enabling the release of recycling cargo from the EE and its delivery toward the ERC. Our findings thus define that delivery of recycling cargo toward the ERC requires spatial and sequential coupling of Rab11 activity with PtdIns(3)P turnover.

  • Cell Biology

A Flat BAR Protein Promotes Actin Polymerization at the Base of Clathrin-Coated Pits.

In Cell on 12 July 2018 by Almeida-Souza, L., Frank, R. A. W., et al.

Multiple proteins act co-operatively in mammalian clathrin-mediated endocytosis (CME) to generate endocytic vesicles from the plasma membrane. The principles controlling the activation and organization of the actin cytoskeleton during mammalian CME are, however, not fully understood. Here, we show that the protein FCHSD2 is a major activator of actin polymerization during CME. FCHSD2 deletion leads to decreased ligand uptake caused by slowed pit maturation. FCHSD2 is recruited to endocytic pits by the scaffold protein intersectin via an unusual SH3-SH3 interaction. Here, its flat F-BAR domain binds to the planar region of the plasma membrane surrounding the developing pit forming an annulus. When bound to the membrane, FCHSD2 activates actin polymerization by a mechanism that combines oligomerization and recruitment of N-WASP to PI(4,5)P2, thus promoting pit maturation. Our data therefore describe a molecular mechanism for linking spatiotemporally the plasma membrane to a force-generating actin platform guiding endocytic vesicle maturation.
Copyright © 2018 MRC Laboratory of Molecular Biology. Published by Elsevier Inc. All rights reserved.

  • FC/FACS
  • Homo sapiens (Human)
  • Cell Biology
View this product on CiteAb