Product Citations: 4

Non-Apoptotic Caspase-3 Activation Mediates Early Synaptic Dysfunction of Indirect Pathway Neurons in the Parkinsonian Striatum.

In International Journal of Molecular Sciences on 13 May 2022 by Fieblinger, T., Li, C., et al.

Non-apoptotic caspase-3 activation is critically involved in dendritic spine loss and synaptic dysfunction in Alzheimer's disease. It is, however, not known whether caspase-3 plays similar roles in other pathologies. Using a mouse model of clinically manifest Parkinson's disease, we provide the first evidence that caspase-3 is transiently activated in the striatum shortly after the degeneration of nigrostriatal dopaminergic projections. This caspase-3 activation concurs with a rapid loss of dendritic spines and deficits in synaptic long-term depression (LTD) in striatal projection neurons forming the indirect pathway. Interestingly, systemic treatment with a caspase inhibitor prevents both the spine pruning and the deficit of indirect pathway LTD without interfering with the ongoing dopaminergic degeneration. Taken together, our data identify transient and non-apoptotic caspase activation as a critical event in the early plastic changes of indirect pathway neurons following dopamine denervation.

  • IHC
  • Mus musculus (House mouse)
  • Neuroscience

SMAlow/undetectable pericytes differentiate into microglia- and macrophage-like cells in ischemic brain.

In Cellular and Molecular Life Sciences : CMLS on 28 April 2022 by Nirwane, A. & Yao, Y.

Pericytes are multipotent perivascular cells that play important roles in CNS injury. However, controversial findings exist on how pericytes change and whether they differentiated into microglia-like cells after ischemic stroke. This discrepancy is mainly due to the lack of pericyte-specific markers: the "pericyte" population identified in previous studies contained vascular smooth muscle cells (vSMCs) and/or fibroblasts. Therefore, it remains unclear which cell type differentiates into microglia-like cells after stroke. In this study, lineage-tracing technique was used to mark α-smooth muscle actin (SMA)low/undetectable pericytes, vSMCs, and fibroblasts, and their fates were analyzed after ischemic stroke. We found that SMAlow/undetectable pericytes and fibroblasts but not vSMCs substantially proliferated at the subacute phase after injury, and that SMAlow/undetectable pericyte but not vSMCs or fibroblasts differentiated into Iba1+ cells after ischemic stroke. Further imaging flow cytometry analysis revealed that SMAlow/undetectable pericytes differentiated into both microglia and macrophages at day 7 after stroke. These results demonstrate that SMAlow/undetectable pericytes rather than vSMCs or fibroblasts differentiate into both microglia-like and macrophage-like cells after stroke, suggesting that these pericytes may be targeted in the treatment of ischemic stroke.
© 2022. The Author(s), under exclusive licence to Springer Nature Switzerland AG.

  • Mus musculus (House mouse)
  • Biochemistry and Molecular biology
  • Immunology and Microbiology
  • Neuroscience

Among caspase family members, Caspase-8 is unique, with associated critical activities to induce and suppress death receptor-mediated apoptosis and necroptosis, respectively. Caspase-8 inhibits necroptosis by suppressing the function of receptor-interacting protein kinase 1 (RIPK1 or RIP1) and RIPK3 to activate mixed lineage kinase domain-like (MLKL). Disruption of Caspase-8 expression causes embryonic lethality in mice, which is rescued by depletion of either Ripk3 or Mlkl, indicating that the embryonic lethality is caused by activation of necroptosis. Here, we show that knockdown of Caspase-8 expression in embryoid bodies derived from ES cells markedly enhances retinoic acid (RA)-induced cell differentiation and necroptosis, both of which are dependent on Ripk1 and Ripk3; however, the enhancement of RA-induced cell differentiation is independent of Mlkl and necrosome formation. RA treatment obviously enhanced the expression of RA-specific target genes having the retinoic acid response element (RARE) in their promoter regions to induce cell differentiation, and induced marked expression of RIPK1, RIPK3, and MLKL to stimulate necroptosis. Caspase-8 knockdown induced RIPK1 and RIPK3 to translocate into the nucleus and to form a complex with RA receptor (RAR), and RAR interacting with RIPK1 and RIPK3 showed much stronger binding activity to RARE than RAR without RIPK1 or RIPK3. In Caspase-8-deficient as well as Caspase-8- and Mlkl-deficient mouse embryos, the expression of RA-specific target genes was obviously enhanced. Thus, Caspase-8, RIPK1, and RIPK3 regulate RA-induced cell differentiation and necroptosis both in vitro and in vivo.

  • Mus musculus (House mouse)
  • Cell Biology

Phosphatidylserine (PS), an anionic phospholipid enriched in the inner leaflet of the plasma membrane, is exposed to the outer leaflet during apoptosis. PS exposure was recently shown to be induced during tumor necrosis factor-induced necroptosis. We herein demonstrated that interferon (IFN)-γ induced necroptosis in Caspase-8-knockout mouse-derived embryonic fibroblasts (C8KO MEFs), as well as in WT MEFs co-treated with the pan-caspase inhibitor, z-VAD-fmk. PS exposure and necroptosis were significant after 6- and 24-h treatments with IFN-γ, respectively. To elucidate the molecular mechanisms underlying IFN-γ-induced PS exposure, we generated C8KO MEF-derived cell lines without the expression of RIPK3 (receptor-interacting protein kinase 3), an essential molecule in tumor necrosis factor-induced necroptosis, and IFN-γ-induced PS exposure and necrotic cell death were shown to be specifically inhibited by the loss of RIPK3 expression. Furthermore, the down-regulated expression of MLKL (mixed lineage kinase domain-like protein), a key molecule for inducing membrane rupture downstream of RIPK3 in necroptosis, abolished IFN-γ-induced PS exposure in C8KO MEFs. In human colorectal adenocarcinoma-derived HT29 cells, PS exposure and necroptosis were similarly induced by treatment with IFN-γ in the presence of Smac mimetics and z-VAD-fmk. The removal of IFN-γ from PS-exposing MEFs after a 6-h treatment completely inhibited necroptotic cell death but not the subsequent increase in the number of PS-exposing cells. Therefore, PS exposure mediated by RIPK3-activated MLKL oligomers was induced by a treatment with IFN-γ for a significant interval of time before the induction of necroptosis by membrane rupture.
© 2019 Chen et al.

  • WB
  • Biochemistry and Molecular biology
View this product on CiteAb