Product Citations: 37

Cancer cells encounter a hostile tumor microenvironment (TME), and their adaptations to metabolic stresses determine metastatic competence. Here, we show that the metabolic enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-4 (PFKFB4) is induced in hypoxic tumors acquiring metabolic plasticity and invasive phenotype. In mouse models of breast cancer, genetic ablation of PFKFB4 significantly delays distant organ metastasis, reducing local lymph node invasion by suppressing expression of invasive gene signature including integrin β3. Photoacoustic imaging followed by metabolomics analyses of hypoxic tumors show that PFKFB4 drives metabolic flexibility, enabling rapid detoxification of reactive oxygen species favoring survival under selective pressure. Mechanistically, hypoxic induction triggers nuclear translocation of PFKFB4 accentuating non-canonical transcriptional activation of HIF-1α, and breast cancer patients with increased nuclear PFKFB4 in their tumors are found to be significantly associated with poor prognosis. Our findings imply that PFKFB4 induction is crucial for tumor cell adaptation in the hypoxic TME that determines metastatic competence.
Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Biochemistry and Molecular biology
  • Cancer Research
  • Cell Biology

The F-box protein FBXL16 up-regulates the stability of C-MYC oncoprotein by antagonizing the activity of the F-box protein FBW7.

In The Journal of Biological Chemistry on 5 June 2020 by Morel, M., Shah, K. N., et al.

F-box proteins, such as F-box/WD repeat-containing protein 7 (FBW7), are essential components of the SKP1-CUL1-F-box (SCF) E3 ubiquitin ligases. They bind to S-phase kinase-associated protein 1 (SKP1) through the F-box motif and deliver their protein substrate to the E3 ligase complex for ubiquitination and subsequent degradation. F-box and leucine-rich repeat protein 16 (FBXL16) is a poorly studied F-box protein. Because it does not interact with the scaffold protein cullin 1 (CUL1), we hypothesized that FBXL16 might not form a functional SCF-E3 ligase complex. In the present study, we found that FBXL16 up-regulates the levels of proteins targeted by SCF-E3 ligases, such as C-MYC, β-catenin, and steroid receptor coactivator 3 (SRC-3). Focusing on C-MYC, a well-known oncoprotein overexpressed in most human cancers, we show that FBXL16 stabilizes C-MYC by antagonizing FBW7-mediated C-MYC ubiquitination and degradation. Further, we found that, although FBXL16 does not interact with CUL1, it interacts with SKP1 via its N-terminal F-box domain and with its substrate C-MYC via its C-terminal leucine-rich repeats (LRRs) domain. We found that both the F-box domain and the LRR domain are important for FBXL16-mediated C-MYC stabilization. In line with its role in up-regulating the levels of the C-MYC and SRC-3 oncoproteins, FBXL16 promoted cancer cell growth and migration and colony formation in soft agar. Our findings reveal that FBXL16 is an F-box protein that antagonizes the activity of another F-box protein, FBW7, and thereby increases C-MYC stability, resulting in increased cancer cell growth and invasiveness.
© 2020 Morel et al.

  • Biochemistry and Molecular biology

Estrogen receptor α (ERα) is a key transcriptional regulator in the majority of breast cancers. ERα-positive patients are frequently treated with tamoxifen, but resistance is common. In this study, we refined a previously identified 111-gene outcome prediction-classifier, revealing FEN1 as the strongest determining factor in ERα-positive patient prognostication. FEN1 levels were predictive of outcome in tamoxifen-treated patients, and FEN1 played a causal role in ERα-driven cell growth. FEN1 impacted the transcriptional activity of ERα by facilitating coactivator recruitment to the ERα transcriptional complex. FEN1 blockade induced proteasome-mediated degradation of activated ERα, resulting in loss of ERα-driven gene expression and eradicated tumor cell proliferation. Finally, a high-throughput 465,195 compound screen identified a novel FEN1 inhibitor, which effectively blocked ERα function and inhibited proliferation of tamoxifen-resistant cell lines as well as ex vivo-cultured ERα-positive breast tumors. Collectively, these results provide therapeutic proof of principle for FEN1 blockade in tamoxifen-resistant breast cancer. SIGNIFICANCE: These findings show that pharmacologic inhibition of FEN1, which is predictive of outcome in tamoxifen-treated patients, effectively blocks ERα function and inhibits proliferation of tamoxifen-resistant tumor cells.
©2020 American Association for Cancer Research.

  • WB
  • Homo sapiens (Human)
  • Cancer Research

SRC-3/AIB1 (Amplified in Breast Cancer-1) is a nuclear receptor coactivator for the estrogen receptor in breast cancer cells. It is also an intrinsically disordered protein when not engaged with transcriptional binding partners and degraded upon transcriptional coactivation. Given the amplified expression of SRC-3 in breast cancers, the objective of this study was to determine how increasing SRC-3 protein levels are regulated in MCF-7 breast cancer cells. We found that endogenous SRC-3 was expelled from the nucleus in vesicle-like spheres under normal growth conditions suggesting that this form of nuclear exclusion of SRC-3 is a homeostatic mechanism for regulating nuclear SRC-3 protein. Only SRC-3 not associated with CREB-binding protein (CBP) was extruded from the nucleus. We found that overexpression in MCF-7 cells results in aneuploid senescence and cell death with frequent formation of nuclear aggregates which were consistently juxtaposed to perinuclear microtubules. Transfected SRC-3 was SUMOylated and caused redistribution of nuclear promyelocytic leukemia (PML) bodies and perturbation of the nuclear membrane lamin B1, hallmarks of nucleophagy. Increased SRC-3 protein-induced autophagy and resulted in SUMO-1 localization to the nuclear membrane and formation of protrusions variously containing SRC-3 and chromatin. Aspects of SRC-3 overexpression and toxicity were recapitulated following treatment with clinically relevant agents that stabilize SRC-3 in breast cancer cells. We conclude that amplified SRC-3 levels have major impacts on nuclear protein quality control pathways and may mark cancer cells for sensitivity to protein stabilizing therapeutics.

  • Homo sapiens (Human)
  • Cell Biology

CARM1 methylates MED12 to regulate its RNA-binding ability.

In Life Science Alliance on 1 October 2018 by Cheng, D., Vemulapalli, V., et al.

The coactivator-associated arginine methyltransferase (CARM1) functions as a regulator of transcription by methylating a diverse array of substrates. To broaden our understanding of CARM1's mechanistic actions, we sought to identify additional substrates for this enzyme. To do this, we generated CARM1 substrate motif antibodies, and used immunoprecipitation coupled with mass spectrometry to identify cellular targets of CARM1, including mediator complex subunit 12 (MED12) and the lysine methyltransferase KMT2D. Both of these proteins are implicated in enhancer function. We identified the major CARM1-mediated MED12 methylation site as arginine 1899 (R1899), which interacts with the Tudor domain-containing effector molecule, TDRD3. Chromatin immunoprecipitation-seq studies revealed that CARM1 and the methyl mark it deposits are tightly associated with ERα-specific enhancers and positively modulate transcription of estrogen-regulated genes. In addition, we showed that the methylation of MED12, at the R1899 site, and the recruitment of TDRD3 by this methylated motif are critical for the ability of MED12 to interact with activating noncoding RNAs.

  • ChIP
  • Genetics
View this product on CiteAb