Product Citations: 7

Remodeling oncogenic transcriptomes by small molecules targeting NONO.

In Nature Chemical Biology on 1 July 2023 by Kathman, S. G., Koo, S. J., et al.

Much of the human proteome is involved in mRNA homeostasis, but most RNA-binding proteins lack chemical probes. Here we identify electrophilic small molecules that rapidly and stereoselectively decrease the expression of transcripts encoding the androgen receptor and its splice variants in prostate cancer cells. We show by chemical proteomics that the compounds engage C145 of the RNA-binding protein NONO. Broader profiling revealed that covalent NONO ligands suppress an array of cancer-relevant genes and impair cancer cell proliferation. Surprisingly, these effects were not observed in cells genetically disrupted for NONO, which were instead resistant to NONO ligands. Reintroduction of wild-type NONO, but not a C145S mutant, restored ligand sensitivity in NONO-disrupted cells. The ligands promoted NONO accumulation in nuclear foci and stabilized NONO-RNA interactions, supporting a trapping mechanism that may prevent compensatory action of paralog proteins PSPC1 and SFPQ. These findings show that NONO can be co-opted by covalent small molecules to suppress protumorigenic transcriptional networks.
© 2023. The Author(s), under exclusive licence to Springer Nature America, Inc.

Mechanical stimulation plays an important role in bone remodeling. Exercise-induced mechanical loading enhances bone strength, whereas mechanical unloading leads to bone loss. Increasing evidence has demonstrated that long noncoding RNAs (lncRNAs) play key roles in diverse biological, physiological and pathological contexts. However, the roles of lncRNAs in mechanotransduction and their relationships with bone formation remain unknown. In this study, we screened mechanosensing lncRNAs in osteoblasts and identified Neat1, the most clearly decreased lncRNA under simulated microgravity. Of note, not only Neat1 expression but also the specific paraspeckle structure formed by Neat1 was sensitive to different mechanical stimulations, which were closely associated with osteoblast function. Paraspeckles exhibited small punctate aggregates under simulated microgravity and elongated prolate or larger irregular structures under mechanical loading. Neat1 knockout mice displayed disrupted bone formation, impaired bone structure and strength, and reduced bone mass. Neat1 deficiency in osteoblasts reduced the response of osteoblasts to mechanical stimulation. In vivo, Neat1 knockout in mice weakened the bone phenotypes in response to mechanical loading and hindlimb unloading stimulation. Mechanistically, paraspeckles promoted nuclear retention of E3 ubiquitin ligase Smurf1 mRNA and downregulation of their translation, thus inhibiting ubiquitination-mediated degradation of the osteoblast master transcription factor Runx2, a Smurf1 target. Our study revealed that Neat1 plays an essential role in osteoblast function under mechanical stimulation, which provides a paradigm for the function of the lncRNA-assembled structure in response to mechanical stimulation and offers a therapeutic strategy for long-term spaceflight- or bedrest-induced bone loss and age-related osteoporosis.
© 2022. The Author(s).

  • Genetics

Prevention of dsRNA-induced interferon signaling by AGO1x is linked to breast cancer cell proliferation.

In The EMBO Journal on 15 September 2020 by Ghosh, S., Guimaraes, J. C., et al.

Translational readthrough, i.e., elongation of polypeptide chains beyond the stop codon, was initially reported for viral RNA, but later found also on eukaryotic transcripts, resulting in proteome diversification and protein-level modulation. Here, we report that AGO1x, an evolutionarily conserved translational readthrough isoform of Argonaute 1, is generated in highly proliferative breast cancer cells, where it curbs accumulation of double-stranded RNAs (dsRNAs) and consequent induction of interferon responses and apoptosis. In contrast to other mammalian Argonaute protein family members with primarily cytoplasmic functions, AGO1x exhibits nuclear localization in the vicinity of nucleoli. We identify AGO1x interaction with the polyribonucleotide nucleotidyltransferase 1 (PNPT1) and show that the depletion of this protein further augments dsRNA accumulation. Our study thus uncovers a novel function of an Argonaute protein in buffering the endogenous dsRNA-induced interferon responses, different than the canonical function of AGO proteins in the miRNA effector pathway. As AGO1x expression is tightly linked to breast cancer cell proliferation, our study thus suggests a new direction for limiting tumor growth.
© 2020 The Authors. Published under the terms of the CC BY 4.0 license.

  • Cancer Research

The related NEAT1_1 and NEAT1_2 long noncoding RNAs (lnc RNAs) have been recently implicated in innate immunity against viral infection. We used CRISPR-Cas9 to generate Jurkat CD4+ T cell lines with a knockout (KO) of the NEAT1 gene. Viabilities of NEAT1 KO Jurkat lines were indistinguishable from parental Jurkat cells, as was the induction of CD69 after T cell activation. The KO lines were however more sensitive to the induction of apoptosis than parental Jurkat cells. HIV-1 replication was higher in the KO lines than parental Jurkat cells, demonstrating an anti-HIV function of NEAT1 lncRNAs. We observed a strong down-regulation of NEAT1 lncRNAs following activation of resting peripheral blood mononuclear cells and purified CD4+ T cells. These findings indicate that HIV-1 infection exploits the normal down-regulation of anti-viral NEAT1 lncRNAs in activated CD4+ T cells to enhance viral replication.
Copyright © 2018 Elsevier Inc. All rights reserved.

  • Genetics
  • Immunology and Microbiology

Androgen-responsive long noncoding RNA CTBP1-AS promotes prostate cancer.

In The EMBO Journal on 12 June 2013 by Takayama, K., Horie-Inoue, K., et al.

High-throughput techniques have identified numerous antisense (AS) transcripts and long non-coding RNAs (ncRNAs). However, their significance in cancer biology remains largely unknown. Here, we report an androgen-responsive long ncRNA, CTBP1-AS, located in the AS region of C-terminal binding protein 1 (CTBP1), which is a corepressor for androgen receptor. CTBP1-AS is predominantly localized in the nucleus and its expression is generally upregulated in prostate cancer. CTBP1-AS promotes both hormone-dependent and castration-resistant tumour growth. Mechanistically, CTBP1-AS directly represses CTBP1 expression by recruiting the RNA-binding transcriptional repressor PSF together with histone deacetylases. CTBP1-AS also exhibits global androgen-dependent functions by inhibiting tumour-suppressor genes via the PSF-dependent mechanism thus promoting cell cycle progression. Our findings provide new insights into the functions of ncRNAs that directly contribute to prostate cancer progression.

  • Cancer Research
  • Endocrinology and Physiology
  • Genetics
View this product on CiteAb