Product Citations: 3

The role of bone morphogenic protein 9 (BMP9) signaling in angiogenesis has been controversial, with a number of studies showing that it acts either as a pro-angiogenic or, conversely, as an anti-angiogenic factor in a context-dependent manner. Notably, BMP9 was also reported to function in both pro- or anti-tumorigenic roles during tumor progression. It has therefore remained unclear, whether selective BMP9 inhibition is a useful target for antibody therapy of cancer. To shed light on these questions, we characterized BMP9 expression in plasma of patients with different cancer indications and found elevated levels of pro-domains and precursor BMP9 with a strong response in renal cell carcinoma (RCC). These studies prompted us to evaluate the potential of selective anti-BMP9 cancer therapy in RCC. We generated a novel monoclonal therapeutic antibody candidate, mAb BMP9-0093, that selectively targets all different BMP9 variants but does not bind to the closest homolog BMP10. In vitro, mAb BMP9-0093 treatment inhibited signaling, endothelin-1 (ET-1) production and spreading of endothelial cells and restored BMP9-induced decrease in pericyte migration and attachment. Furthermore, BMP9-mediated epithelial-mesenchymal transition of renal cell carcinoma cells was reversed by mAb BMP9-0093 treatment in vitro. In vivo, mAb BMP9-0093 showed significant anti-tumor activity that was associated with an increase in apoptosis as well as a decrease in tumor cell proliferation and ET-1 release. Furthermore, mAb BMP9-0093 induced mural cell coverage of endothelial cells, which was corroborated by a reduction in vascular permeability, demonstrated by a diminished penetration of omalizumab-Alexa 647 into tumor tissue. Our findings provide new evidence for a better understanding of BMP9 contribution in tumor progression and angiogenesis that may result in the development of effective targeted therapeutic interventions.
© 2016 Federation of European Biochemical Societies.

  • WB
  • Cancer Research

Comparison between fibroblasts and mesenchymal stem cells derived from dermal and adipose tissue.

In International Journal of Cosmetic Science on 1 October 2013 by Brohem, C. A., de Carvalho, C. M., et al.

Stem cells have the ability to renew themselves and differentiate into various cell types. For this reason, numerous research groups have been studying these cells for their therapeutic potential. Some of the therapies, however, are not producing the expected results because of contamination by other cell types, especially by fibroblasts. In the cosmetic industry, stem cells are used to test the efficacy of anti-ageing and rejuvenation products. The purpose of this work was to gain a better understanding of the differences in phenotype, in gene expression associated with stem cells, in the pattern of cell surface proteins and in the differentiation capacity of adipose-derived stem cells, of skin-derived stem cells and of commercially available fibroblasts.
In this study, we compared fibroblasts with mesenchymal stem cells derived from bone marrow, skin (dermis) and adipose tissue, to assess the differentiation potential of fibroblasts. Dermal and adipose stem cells were isolated from aesthetic surgery patients, and fibroblasts were obtained from a commercial source. The following parameters were used in this study: immunophenotypic profile (positive: CD29, CD73, CD90 and CD105; negative: CD14, CD45 and HLA-DR); differentiation into osteoblastic, chondrogenic and adipogenic cell types; and PCR array to analyse the gene expression of cells isolated from different culture passages.
Fibroblasts express the same cell immunophenotypic markers, as well as the genes that are known to be expressed in stem cells, and were shown to be expressed also in adipose and dermis stem cells. Fibroblasts are also able to differentiate into the three cell lineages mentioned above, that is, adipocytes, osteocytes and chondrocytes.
Human dermal fibroblasts have a potential to adhere to plastic surfaces and differentiate into other cell types. However, for stem cells intended to be used in cosmetics, experiments conducted with contaminated fibroblasts may produce poor or even falsely negative results for the efficacy of the active ingredient or formulation and thus conceal their promising effects as anti-ageing and skin rejuvenation products.
© 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  • Stem Cells and Developmental Biology

Endoglin (ENG), a co-receptor for several TGFβ-family cytokines, is expressed in dividing endothelial cells alongside ALK1, the ACVRL1 gene product. ENG and ACVRL1 are both required for angiogenesis and mutations in either gene are associated with Hereditary Hemorrhagic Telangectasia, a rare genetic vascular disorder. ENG and ALK1 function in the same genetic pathway but the relative contribution of TGFβ and BMP9 to SMAD1/5/8 activation and the requirement of ENG as a co-mediator of SMAD phosphorylation in endothelial cells remain debated. Here, we show that BMP9 and TGFβ1 induce distinct SMAD phosphorylation responses in primary human endothelial cells and that, unlike BMP9, TGFβ only induces SMAD1/5/8 phosphorylation in a subset of immortalized mouse endothelial cell lines, but not in primary human endothelial cells. We also demonstrate, using siRNA depletion of ENG and novel anti-ENG antibodies, that ENG is required for BMP9/pSMAD1 signaling in all human and mouse endothelial cells tested. Finally, anti-ENG antibodies that interfere with BMP9/pSMAD1 signaling, but not with TGFβ1/pSMAD3 signaling, also decrease in vitro HUVEC endothelial tube formation and inhibit BMP9 binding to recombinant ENG in vitro. Our data demonstrate that BMP9 signaling inhibition is a key and previously unreported mechanism of action of TRC105, an anti-angiogenic anti-Endoglin antibody currently evaluated in clinical trials.

  • WB
  • Homo sapiens (Human)
View this product on CiteAb