Product Citations: 16

Loss of BAF Complex in Developing Cortex Perturbs Radial Neuronal Migration in a WNT Signaling-Dependent Manner.

In Frontiers in Molecular Neuroscience on 6 July 2021 by Sokpor, G., Kerimoglu, C., et al.

Radial neuronal migration is a key neurodevelopmental event indispensable for proper cortical laminar organization. Cortical neurons mainly use glial fiber guides, cell adhesion dynamics, and cytoskeletal remodeling, among other discrete processes, to radially trek from their birthplace to final layer positions. Dysregulated radial migration can engender cortical mis-lamination, leading to neurodevelopmental disorders. Epigenetic factors, including chromatin remodelers have emerged as formidable regulators of corticogenesis. Notably, the chromatin remodeler BAF complex has been shown to regulate several aspects of cortical histogenesis. Nonetheless, our understanding of how BAF complex regulates neuronal migration is limited. Here, we report that BAF complex is required for neuron migration during cortical development. Ablation of BAF complex in the developing mouse cortex caused alteration in the cortical gene expression program, leading to loss of radial migration-related factors critical for proper cortical layer formation. Of note, BAF complex inactivation in cortex caused defective neuronal polarization resulting in diminished multipolar-to-bipolar transition and eventual disruption of radial migration of cortical neurons. The abnormal radial migration and cortical mis-lamination can be partly rescued by downregulating WNT signaling hyperactivity in the BAF complex mutant cortex. By implication, the BAF complex modulates WNT signaling to establish the gene expression program required for glial fiber-dependent neuronal migration, and cortical lamination. Overall, BAF complex has been identified to be crucial for cortical morphogenesis through instructing multiple aspects of radial neuronal migration in a WNT signaling-dependent manner.
Copyright © 2021 Sokpor, Kerimoglu, Nguyen, Pham, Rosenbusch, Wagener, Nguyen, Fischer, Staiger and Tuoc.

  • Mus musculus (House mouse)
  • Neuroscience

BAF60a deficiency uncouples chromatin accessibility and cold sensitivity from white fat browning.

In Nature Communications on 13 May 2020 by Liu, T., Mi, L., et al.

Brown and beige fat share a remarkably similar transcriptional program that supports fuel oxidation and thermogenesis. The chromatin-remodeling machinery that governs genome accessibility and renders adipocytes poised for thermogenic activation remains elusive. Here we show that BAF60a, a subunit of the SWI/SNF chromatin-remodeling complexes, serves an indispensable role in cold-induced thermogenesis in brown fat. BAF60a maintains chromatin accessibility at PPARγ and EBF2 binding sites for key thermogenic genes. Surprisingly, fat-specific BAF60a inactivation triggers more pronounced cold-induced browning of inguinal white adipose tissue that is linked to induction of MC2R, a receptor for the pituitary hormone ACTH. Elevated MC2R expression sensitizes adipocytes and BAF60a-deficient adipose tissue to thermogenic activation in response to ACTH stimulation. These observations reveal an unexpected dichotomous role of BAF60a-mediated chromatin remodeling in transcriptional control of brown and beige gene programs and illustrate a pituitary-adipose signaling axis in the control of thermogenesis.

  • WB
  • Mus musculus (House mouse)

SWI/SNF complex subunit BAF60a represses hepatic ureagenesis through a crosstalk between YB-1 and PGC-1α.

In Molecular Metabolism on 1 February 2020 by Zhang, W., Dong, Z., et al.

Ureagenesis predominantly occurs in the liver and functions to remove ammonia, and the dysregulation of ureagenesis leads to the development of hyperammonemia. Recent studies have shown that ureagenesis is under the control of nutrient signals, but the mechanism remains elusive. Therefore, intensive investigation of the molecular mechanism underlying ureagenesis will shed some light on the pathology of metabolic diseases related to ammonia imbalance.
Mice were fasted for 24 h or fed a high-fat diet (HFD) for 16 weeks. For human evaluation, we obtained a public data set including 41 obese patients with and without hepatic steatosis. We analyzed the expression levels of hepatic BAF60a under different nutrient status. The impact of BAF60a on ureagenesis and hyperammonemia was assessed by using gain- and loss-of-function strategies. The molecular chaperons mediating the effects of BAF60a on ureagenesis were validated by molecular biological strategies.
BAF60a was induced in the liver of both fasted and HFD-fed mice and was positively correlated with body mass index in obese patients. Liver-specific overexpression of BAF60a inhibited hepatic ureagenesis, leading to the increase of serum ammonia levels. Mechanistically, BAF60a repressed the transcription of Cps1, a rate-limiting enzyme, through interaction with Y-box protein 1 (YB-1) and by switching the chromatin structure of Cps1 promoter into an inhibitory state. More importantly, in response to different nutrient status, PGC-1α (as a transcriptional coactivator) and YB-1 competitively bound to BAF60a, thus selectively regulating hepatic fatty acid β-oxidation and ureagenesis.
The BAF60a-YB-1 axis represses hepatic ureagenesis, thereby contributing to hyperammonemia under overnutrient status. Therefore, hepatic BAF60a may be a novel therapeutic target for the treatment of overnutrient-induced urea cycle disorders and their associated diseases.
Copyright © 2019 The Author(s). Published by Elsevier GmbH.. All rights reserved.

  • WB
  • Biochemistry and Molecular biology

SWI/SNF chromatin remodeling enzymes are multisubunit complexes that contain one of two catalytic subunits, BRG1 or BRM and 9-11 additional subunits called BRG1 or BRM-associated factors (BAFs). BRG1 interacts with the microphthalmia-associated transcription factor (MITF) and is required for melanocyte development in vitro and in vivo. The subunits of SWI/SNF that mediate interactions between BRG1 and MITF have not been elucidated. Three mutually exclusive isoforms of a 60-kDa subunit (BAF60A, B, or C) often facilitate interactions with transcription factors during lineage specification. We tested the hypothesis that a BAF60 subunit promotes interactions between MITF and the BRG1-containing SWI/SNF complex. We found that MITF can physically interact with BAF60A, BAF60B, and BAF60C. The interaction between MITF and BAF60A required the basic helix-loop-helix domain of MITF. Recombinant BAF60A pulled down recombinant MITF, suggesting that the interaction can occur in the absence of other SWI/SNF subunits and other transcriptional regulators of the melanocyte lineage. Depletion of BAF60A in differentiating melanoblasts inhibited melanin synthesis and expression of MITF target genes. MITF promoted BAF60A recruitment to melanocyte-specific promoters, and BAF60A was required to promote BRG1 recruitment and chromatin remodeling. Thus, BAF60A promotes interactions between MITF and the SWI/SNF complex and is required for melanocyte differentiation.
© 2018 Wiley Periodicals, Inc.

  • Biochemistry and Molecular biology
  • Endocrinology and Physiology

SWI/SNF remains localized to chromatin in the presence of SCHLAP1.

In Nature Genetics on 1 January 2019 by Raab, J. R., Smith, K. N., et al.

SCHLAP1 is a long noncoding RNA that is reported to function by depleting the SWI/SNF complex from the genome. We investigated the hypothesis that SCHLAP1 affects only specific compositions of SWI/SNF. Using several assays, we found that SWI/SNF is not depleted from the genome by SCHLAP1 and that SWI/SNF is associated with many coding and noncoding RNAs, suggesting that SCHLAP1 may function in a SWI/SNF-independent manner.

  • Homo sapiens (Human)
  • Genetics
View this product on CiteAb