Product Citations: 9

A quantitative method to monitor STING degradation with dual-luciferase reporters.

In Cell Structure and Function on 20 May 2025 by Shoji, T., Sato, K., et al.

Stimulator of interferon genes (STING) triggers the type I interferon and inflammatory responses against a variety of DNA pathogens, which is essential to limiting viral infection and replication. STING activates the downstream kinase TBK1 at the trans-Golgi network (TGN) and is degraded at lysosomes through a process called lysosomal microautophagy. Impaired STING targeting to lysosomes results in the prolonged inflammatory signal, which may be associated with a variety of neurodegenerative and autoinflammatory diseases. Thus, development of methods to quantify STING degradation helps understand the mechanism of lysosomal microautophagy and its related diseases. Here we report a quantitative method to monitor STING degradation with two luciferases, firefly luciferase (FLuc) and Nanoluciferase (NLuc). The expression plasmid is composed of FLuc, a P2A self-cleavage site, and NLuc-tagged STING. FLuc intensity reflects the total amount of translated protein, serving as an internal control, while NLuc intensity corresponds to the amount of STING. Comparison of the NLuc/FLuc ratios at different time points after STING stimulation revealed the kinetics of decay of STING levels in live cells. This method should provide a useful complement to western blotting and fluorescence-activated cell sorter (FACS) analysis presently used to monitor STING degradation.Key words: innate immunity, STING, membrane traffic, lysosomal degradation, luciferase.

  • ICC
  • Mus musculus (House mouse)

Detection of the interactions of tumour derived extracellular vesicles with immune cells is dependent on EV-labelling methods.

In Journal of Extracellular Vesicles on 1 December 2023 by Loconte, L., Arguedas, D., et al.

Cell-cell communication within the complex tumour microenvironment is critical to cancer progression. Tumor-derived extracellular vesicles (TD-EVs) are key players in this process. They can interact with immune cells and modulate their activity, either suppressing or activating the immune system. Deciphering the interactions between TD-EVs and immune cells is essential to understand immune modulation by cancer cells. Fluorescent labelling of TD-EVs is a method of choice to study such interaction. This work aims to determine the impact of EV labelling methods on the detection by imaging flow cytometry and multicolour spectral flow cytometry of EV interaction and capture by the different immune cell types within human Peripheral Blood Mononuclear Cells (PBMCs). EVs released by the triple-negative breast carcinoma cell line MDA-MB-231 were labelled either with the lipophilic dye MemGlow-488 (MG-488), Carboxyfluorescein diacetate, succinimidyl ester (CFDA-SE) or through ectopic expression of a MyrPalm-superFolderGFP reporter (mp-sfGFP), which incorporates into EVs during their biogenesis. Our results show that these labelling strategies, although analysed with the same techniques, led to diverging results. While MG-488-labelled EVs incorporate in all cell types, CFSE-labelled EVs are restricted to a minor subset of cells and mp-sfGFP-labelled EVs are mainly detected in CD14+ monocytes which are the main uptakers of EVs and other particles, regardless of the labelling method. Furthermore, our results show that the method used for EV labelling influences the detection of the different types of EV interactions with the recipient cells. Specifically, MG-488, CFSE and mp-sfGFP result in observation suggesting, respectively, transient EV-PM interaction that results in dye transfer, EV content delivery, and capture of intact EVs. Consequently, the type of EV labelling method has to be considered as they can provide complementary information on various types of EV-cell interaction and EV fate.
© 2023 The Authors. Journal of Extracellular Vesicles published by Wiley Periodicals LLC on behalf of International Society for Extracellular Vesicles.

  • WB
  • Homo sapiens (Human)
  • Cancer Research
  • Immunology and Microbiology

Detection of tumor-derived extracellular vesicles interactions with immune cells is dependent on EV-labelling methods

Preprint on BioRxiv : the Preprint Server for Biology on 4 January 2023 by Loconte, L., Arguedas, D., et al.

ABSTRACT Cell-cell communication within the complex tumor microenvironment is critical to cancer progression. Tumor-derived extracellular vesicles (TD-EVs) are key players in this process. They can interact with immune cells and modulate their activity, either suppressing or activating the immune system. Understanding the interactions between TD-EVs and immune cells is essential for understanding immune modulation by cancer cells. Fluorescent labelling of TD-EVs is a method of choice to study such interaction. This work aims to determine the impact of EV labelling methods on the detection of EV interaction and capture by the different immune cell types within human Peripheral Blood Mononuclear Cells (PBMCs), analyzed by imaging flow cytometry and multicolor spectral flow cytometry. EVs released by the triple-negative breast carcinoma cell line MDA-MB-231 were labeled either with the lipophilic dye MemGlow-488 (MG-488), with Carboxyfluorescein diacetate, succinimidyl ester (CFDA-SE), or through expression of a MyrPalm-superFolder GFP (sfGFP) that incorporates into EVs during their biogenesis using a genetically engineered cell line. Our results showed that these different labeling strategies, although analyzed with the same techniques, led to diverging results. While MG-488-labelled EVs incorporate in all cell types, CFSE-labelled EVs are restricted to a minor subset of cells and sfGFP-labelled EVs are mainly detected in CD14+ monocytes which are the main uptakers of EVs and other particles, regardless of the labeling method. Moreover, MG-488-labeled liposomes behaved similarly to MG-488 EVs, highlighting the predominant role of the labelling strategy on the visualization and analysis of TD-EVs uptake by immune cell types. Consequently, the use of different EV labeling methods has to be considered as they can provide complementary information on various types of EV-cell interaction and EV fate.

  • Homo sapiens (Human)
  • Cancer Research
  • Immunology and Microbiology

Biosynthesis of O-N-acetylgalactosamine glycans in the human cell nucleus.

In The Journal of Biological Chemistry on 1 March 2019 by Cejas, R. B., Lorenz, V., et al.

Biological functions of nuclear proteins are regulated by post-translational modifications (PTMs) that modulate gene expression and cellular physiology. However, the role of O-linked glycosylation (O-GalNAc) as a PTM of nuclear proteins in the human cell has not been previously reported. Here, we examined in detail the initiation of O-GalNAc glycan biosynthesis, representing a novel PTM of nuclear proteins in the nucleus of human cells, with an emphasis on HeLa cells. Using soluble nuclear fractions from purified nuclei, enzymatic assays, fluorescence microscopy, affinity chromatography, MS, and FRET analyses, we identified all factors required for biosynthesis of O-GalNAc glycans in nuclei: the donor substrate (UDP-GalNAc), nuclear polypeptide GalNAc -transferase activity, and a GalNAc transferase (polypeptide GalNAc-T3). Moreover, we identified O-GalNAc glycosylated proteins in the nucleus and present solid evidence for O-GalNAc glycan synthesis in this organelle. The demonstration of O-GalNAc glycosylation of nuclear proteins in mammalian cells reported here has important implications for cell and chemical biology.
© 2019 Cejas et al.

  • ICC-IF
  • Homo sapiens (Human)
  • Biochemistry and Molecular biology

The unconventional secretion of ARMS2.

In Human Molecular Genetics on 1 August 2016 by Kortvely, E., Hauck, S. M., et al.

Age-related maculopathy susceptibility 2 (ARMS2) is a small (11 kDa), primate-specific protein found in the extracellular matrix of the choroid layer in the eye. Variants in the corresponding genetic locus are highly associated with age-related macular degeneration, a leading cause of blindness in the elderly. So far, the physiological function of ARMS2 has remained enigmatic. It has been demonstrated that ARMS2 is a genuine secreted protein devoid of an N-terminal leader sequence, yet the mechanism how it exits the cells and enters the choroidal matrix is not understood. Here, we show that ARMS2 efficiently recruits lectin chaperones from the cytosol and colocalizes with calnexin-positive and protein disulfide isomerase-negative vesicle-like structures. Site-directed mutagenesis revealed critical elements for this interaction. Mutant forms proving unable to interact with the calnexin/calreticulin system failed secretion. On the other hand, blocking the endoplasmic reticulum to Golgi transport with brefeldin A had no effect on ARMS2 secretion. As we found ARMS2 colocalizing with GRASP65, a marker for unconventional protein secretion, autophagic factors are likely to be key in its export. Interleukin-1ß (IL-1ß) is the most established example of secretory autophagy. Co-expression experiments, however, suggest that the transport of ARMS2 is different from that of IL-1ß. In conclusion, in this work we show that ARMS2 is externalized via an unconventional pathway bypassing Golgi. Its intracellular separation from the classical secretion pathway suggests that the maturation of the protein requires a specific biochemical niche and/or may be needed to impede the premature formation of unwanted protein-protein interactions.
© The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  • Homo sapiens (Human)
  • Genetics
View this product on CiteAb