Product Citations: 13

Dual MYC and GSPT1 Protein Degrader for MYC-Driven Cancers

Preprint on BioRxiv : the Preprint Server for Biology on 27 April 2025 by Nishida, Y., Impedovo, V., et al.

ABSTRACT Direct targeting of the oncoprotein MYC has long been attempted in cancer therapy, with limited success. We here identify a novel co-regulatory feedback loop of MYC and G1 to S phase transition protein 1 (GSPT1), where MYC promotes transcription of GSPT1, and GSPT1 senses stop codon of MYC to promote its translation. We report on the first-in-class dual MYC/GSPT1 protein degrader, GT19630. GT19630 significantly induced integrated stress response, abrogated oxidative phosphorylation through inhibition of the TCA cycle and induced cell death. Protein degradation of MYC was critical for efficacy of GT19630. GT19630 induced profound anti-proliferative effects and apoptosis agnostic to TP53 in a broad range of cancer cells, and is highly active in vivo in multiple, therapy-resistant hematologic and solid tumor models. Dual MYC/GSPT1 degradation was well tolerated in humanized Crbn I391V mice. In conclusion, we propose a novel treatment approach by directly targeting the MYC-GSPT1 axis in MYC-driven cancers. Statement of significance MYC has been considered an undruggable protein. We found a targetable, novel positive co-regulatory feedback of MYC and GSPT1, a key translation terminator. The dual MYC/GSPT1 degrader GT19630 is highly active in MYC-driven tumors, with moderate effects on humanized Crbn mice, providing opportunities to improve treatment outcome of MYC-driven cancers.

The biological determinants underlying the range of coronavirus 2019 (COVID-19) clinical manifestations are not fully understood. Here, over 1,400 plasma proteins and 2,600 single-cell immune features comprising cell phenotype, endogenous signaling activity, and signaling responses to inflammatory ligands are cross-sectionally assessed in peripheral blood from 97 patients with mild, moderate, and severe COVID-19 and 40 uninfected patients. Using an integrated computational approach to analyze the combined plasma and single-cell proteomic data, we identify and independently validate a multi-variate model classifying COVID-19 severity (multi-class area under the curve [AUC]training = 0.799, p = 4.2e-6; multi-class AUCvalidation = 0.773, p = 7.7e-6). Examination of informative model features reveals biological signatures of COVID-19 severity, including the dysregulation of JAK/STAT, MAPK/mTOR, and nuclear factor κB (NF-κB) immune signaling networks in addition to recapitulating known hallmarks of COVID-19. These results provide a set of early determinants of COVID-19 severity that may point to therapeutic targets for prevention and/or treatment of COVID-19 progression.
Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.

  • COVID-19
  • Immunology and Microbiology

Targeting human CALR-mutated MPN progenitors with a neoepitope-directed monoclonal antibody.

In EMBO Reports on 5 April 2022 by Tvorogov, D., Thompson-Peach, C. A. L., et al.

Calreticulin (CALR) is recurrently mutated in myelofibrosis via a frameshift that removes an endoplasmic reticulum retention signal, creating a neoepitope potentially targetable by immunotherapeutic approaches. We developed a specific rat monoclonal IgG2α antibody, 4D7, directed against the common sequence encoded by both insertion and deletion mutations. 4D7 selectively bound to cells co-expressing mutant CALR and thrombopoietin receptor (TpoR) and blocked JAK-STAT signalling, TPO-independent proliferation and megakaryocyte differentiation of mutant CALR myelofibrosis progenitors by disrupting the binding of CALR dimers to TpoR. Importantly, 4D7 inhibited proliferation of patient samples with both insertion and deletion CALR mutations but not JAK2 V617F and prolonged survival in xenografted bone marrow models of mutant CALR-dependent myeloproliferation. Together, our data demonstrate a novel therapeutic approach to target a problematic disease driven by a recurrent somatic mutation that would normally be considered undruggable.
© 2022 The Authors. Published under the terms of the CC BY 4.0 license.

  • WB

The mechanisms regulating exhaustion of tumor-infiltrating lymphocytes (TIL) and responsiveness to PD-1 blockade remain partly unknown. In human ovarian cancer, we show that tumor-specific CD8+ TIL accumulate in tumor islets, where they engage antigen and upregulate PD-1, which restrains their functions. Intraepithelial PD-1+CD8+ TIL can be, however, polyfunctional. PD-1+ TIL indeed exhibit a continuum of exhaustion states, with variable levels of CD28 costimulation, which is provided by antigen-presenting cells (APC) in intraepithelial tumor myeloid niches. CD28 costimulation is associated with improved effector fitness of exhausted CD8+ TIL and is required for their activation upon PD-1 blockade, which also requires tumor myeloid APC. Exhausted TIL lacking proper CD28 costimulation in situ fail to respond to PD-1 blockade, and their response may be rescued by local CTLA-4 blockade and tumor APC stimulation via CD40L.
Copyright © 2021 Elsevier Inc. All rights reserved.

  • WB
  • Homo sapiens (Human)
  • Cancer Research
  • Immunology and Microbiology

PEGylated recombinant human granulocyte colony stimulating factor (pegfilgrastim) is used clinically to accelerate immune reconstitution following chemotherapy and is being pursued for biosimilar development. One challenge to overcome in pegfilgrastim biosimilar development is establishing pharmacokinetic (PK) similarity, which is partly due to the degree of PK variability. We herein report that commercially available G-CSF and PEG ELISA detection kits have different capacities to detect pegfilgrastim aggregates that rapidly form in vitro in physiological conditions. These aggregates can be observed using SDS-PAGE, size-exclusion chromatography, dynamic light scattering, and real-time NMR analysis and are associated with decreased bioactivity as reflected by reduced drug-induced cellular proliferation and STAT3 phosphorylation. Furthermore, individual variability in the stability and detectability of pegfilgrastim in human sera is also observed. Pegfilgrastim levels display marked subject variability in sera from healthy donors incubated at 37 °C. The stability patterns of pegfilgrastim closely match the stability patterns of filgrastim, consistent with a key role for pegfilgrastim's G-CSF moiety in driving formation of inactive aggregates. Taken together, our results indicate that individual variability and ELISA specificity for inactive aggregates are key factors to consider when designing and interpreting studies involving the measurement of serum pegfilgrastim concentrations.

  • WB
  • Mus musculus (House mouse)
  • Endocrinology and Physiology
View this product on CiteAb