Product Citations: 6

CDC5L surveils cellular stress responses and stress granule formation through transcriptional repression

Preprint on BioRxiv : the Preprint Server for Biology on 4 January 2024 by Qian, B., Li, S., et al.

ABSTRACT Cells have evolved a variety of mechanisms to respond to stress, such as activating the PERK– eIF2α pathway and forming stress granules (SGs). It is important that these mechanisms are inducted only when necessary and exerted at appropriate levels, to prevent spontaneous or excessive activation of stress responses. However, the mechanisms by which cells keep the stress response programs in check are elusive. In this study, we discovered that downregulation of Cell Division Cycle 5 Like ( CDC5L ) causes spontaneous SG formation in the absence of any stress, which is independent of its known functions in the cell cycle or the PRP19 complex. Instead, we found that CDC5L binds to the PERK promoter through its DNA-binding domains and represses PERK mRNA transcription. As a result, it negatively regulates the abundance of PERK protein and the phosphorylation levels of eIF2α, thereby suppressing the PERK–eIF2α signaling pathway and preventing undesirable SG assembly. Further RNA-sequencing (seq) and chromatin immunoprecipitation (ChIP)-seq analyses reveal a dual function of CDC5L in gene transcription: it acts as a transcriptional activator in cell cycle control but as a repressor in cellular stress responses. Finally, we show that the loss of CDC5L decreases cell viability and fly survival under mild stress conditions. Together, our findings demonstrate a previously unknown role and mechanism of CDC5L in the surveillance of cellular stress through transcriptional repression, which serves as a gatekeeper for the stress response programs such as the PERK–eIF2α pathway and SG formation. Significance statement Cells need to respond to stress promptly for survival. Meanwhile, it is equally important to prevent spontaneous or excessive activation of stress response programs when no stress or only minor stress is present. Here, we reveal that the DNA/RNA-binding protein CDC5L represses the transcription of a cluster of stress response genes including PERK . In doing so, CDC5L suppresses the PERK-eIF2α pathway and prevents spontaneous SG assembly. Downregulation of CDC5L releases the restraint on these genes, resulting in an exaggerated response to stress and decreased viability in both cell and fly models. Taken together, this study demonstrates the existence of a gatekeeper mechanism that surveils the stress response programs and highlights the crucial role of CDC5L-mediated transcriptional repression in this regulation.

  • Biochemistry and Molecular biology

NSMF promotes the replication stress-induced DNA damage response for genome maintenance.

In Nucleic Acids Research on 4 June 2021 by Ju, M. K., Shin, K. J., et al.

Proper activation of DNA repair pathways in response to DNA replication stress is critical for maintaining genomic integrity. Due to the complex nature of the replication fork (RF), problems at the RF require multiple proteins, some of which remain unidentified, for resolution. In this study, we identified the N-methyl-D-aspartate receptor synaptonuclear signaling and neuronal migration factor (NSMF) as a key replication stress response factor that is important for ataxia telangiectasia and Rad3-related protein (ATR) activation. NSMF localizes rapidly to stalled RFs and acts as a scaffold to modulate replication protein A (RPA) complex formation with cell division cycle 5-like (CDC5L) and ATR/ATR-interacting protein (ATRIP). Depletion of NSMF compromised phosphorylation and ubiquitination of RPA2 and the ATR signaling cascade, resulting in genomic instability at RFs under DNA replication stress. Consistently, NSMF knockout mice exhibited increased genomic instability and hypersensitivity to genotoxic stress. NSMF deficiency in human and mouse cells also caused increased chromosomal instability. Collectively, these findings demonstrate that NSMF regulates the ATR pathway and the replication stress response network for genome maintenance and cell survival.
© The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research.

  • Biochemistry and Molecular biology
  • Genetics

A Broad Response to Intracellular Long-Chain Polyphosphate in Human Cells.

In Cell Reports on 27 October 2020 by Bondy-Chorney, E., Abramchuk, I., et al.

Polyphosphates (polyPs) are long chains of inorganic phosphates linked by phosphoanhydride bonds. They are found in all kingdoms of life, playing roles in cell growth, infection, and blood coagulation. Unlike in bacteria and lower eukaryotes, the mammalian enzymes responsible for polyP metabolism are largely unexplored. We use RNA sequencing (RNA-seq) and mass spectrometry to define a broad impact of polyP produced inside of mammalian cells via ectopic expression of the E. coli polyP synthetase PPK. We find that multiple cellular compartments can support accumulation of polyP to high levels. Overproduction of polyP is associated with reprogramming of both the transcriptome and proteome, including activation of the ERK1/2-EGR1 signaling axis. Finally, fractionation analysis shows that polyP accumulation results in relocalization of nuclear/cytoskeleton proteins, including targets of non-enzymatic lysine polyphosphorylation. Our work demonstrates that internally produced polyP can activate diverse signaling pathways in human cells.
Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.

A phosphorylation-and-ubiquitylation circuitry driving ATR activation and homologous recombination.

In Nucleic Acids Research on 6 September 2017 by Dubois, J. C., Yates, M., et al.

RPA-coated single-stranded DNA (RPA-ssDNA), a nucleoprotein structure induced by DNA damage, promotes ATR activation and homologous recombination (HR). RPA is hyper-phosphorylated and ubiquitylated after DNA damage. The ubiquitylation of RPA by PRP19 and RFWD3 facilitates ATR activation and HR, but how it is stimulated by DNA damage is still unclear. Here, we show that RFWD3 binds RPA constitutively, whereas PRP19 recognizes RPA after DNA damage. The recruitment of PRP19 by RPA depends on PIKK-mediated RPA phosphorylation and a positively charged pocket in PRP19. An RPA32 mutant lacking phosphorylation sites fails to recruit PRP19 and support RPA ubiquitylation. PRP19 mutants unable to bind RPA or lacking ubiquitin ligase activity also fail to support RPA ubiquitylation and HR. These results suggest that RPA phosphorylation enhances the recruitment of PRP19 to RPA-ssDNA and stimulates RPA ubiquitylation through a process requiring both PRP19 and RFWD3, thereby triggering a phosphorylation-ubiquitylation circuitry that promotes ATR activation and HR.
© The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  • WB
  • Homo sapiens (Human)
  • Biochemistry and Molecular biology

Activation-induced cytidine deaminase (AID) is localized to subnuclear domains enriched in splicing factors.

In Experimental Cell Research on 10 March 2014 by Hu, Y., Ericsson, I., et al.

Activation-induced cytidine deaminase (AID) is the mutator enzyme in adaptive immunity. AID initiates the antibody diversification processes in activated B cells by deaminating cytosine to uracil in immunoglobulin genes. To some extent other genes are also targeted, which may lead to genome instability and B cell malignancy. Thus, it is crucial to understand its targeting and regulation mechanisms. AID is regulated at several levels including subcellular compartmentalization. However, the complex nuclear distribution and trafficking of AID has not been studied in detail previously. In this work, we examined the subnuclear localization of AID and its interaction partner CTNNBL1 and found that they associate with spliceosome-associated structures including Cajal bodies and nuclear speckles. Moreover, protein kinase A (PKA), which activates AID by phosphorylation at Ser38, is present together with AID in nuclear speckles. Importantly, we demonstrate that AID physically associates with the major spliceosome subunits (small nuclear ribonucleoproteins, snRNPs), as well as other essential splicing components, in addition to the transcription machinery. Based on our findings and the literature, we suggest a transcription-coupled splicing-associated model for AID targeting and activation.
Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  • Cell Biology
  • Genetics
View this product on CiteAb