Product Citations: 5

Abstract Ovarian clear cell carcinoma is characterized by HNF-1ß overexpression and is known to be resistant to chemotherapy. An inhibitor screening that specifically targets HNF-1ß led us to identify Actinonin as a candidate for cancer treatment. Actinonin, which is known to inhibit aminopeptidase M, has also been recognized for its antibacterial properties. We confirmed that GSK-3ß interference/inhibition, as a component of the HNF-1ß pathway, combined with Actinonin, has a highly potent antitumor effect compared to monotherapy.The same effect was observed in renal clear cell carcinoma lines expressing HNF-1ß. Actinonin promoted mitochondrial production by suppressing aerobic respiration, which decreased AMPK levels and increased ROS production. However, it also elevated GADD45α expression and induced mitophagy. GSK-3ß inhibition suppressed glycolysis and shifted energy production to OXPHOS, leading to increased ROS production. Furthermore, this combination produced excess ROS beyond metabolic capacity, which accumulated in lipid bilayers, leading to a further increase in CHOP gene expression and suppression of mitochondrial turnover. The GSK-3ß inhibitor and Actinonin combination demonstrated a powerful tumor-suppressive effect in vivo without severe side effects. Combining GSK-3ß inhibition with Actinonin can effectively eliminate cancer cells with HNF-1ß overexpression by inhibiting glycolysis and promoting mitochondrial turnover, highlighting new options for cancer therapy.

  • Cancer Research
  • Cell Biology

Transcription factor hepatocyte nuclear factor 1-beta (HNF-1β) enhances checkpoint kinase 1 (Chk1) activation and promotes G2/M cell cycle progression in ovarian clear cell carcinoma (CCC) following exposure to diverse genotoxic agents including bleomycin. However, the underlying mechanism leading to checkpoint activation of HNF-1β still remains largely unknown. To clarify the effects of HNF-1β on cell cycle checkpoints, human CCC cell lines were transfected with siRNAs targeting HNF-1β, Claspin, USP28, or a control vector. Ubiquitination and stabilization of Claspin protein by HNF-1β was assessed by immunoprecipitation. Loss-of-function studies using RNAi-mediated gene silencing indicated that HNF-1β facilitated the Claspin expression after treatment with a genotoxic agent bleomycin, resulting in accumulation of phosphorylated Chk1 (p-Chk1) and promotion of survival in CCC cell lines. This study showed for the first time that USP28, a de-ubiquitinase crucial for Claspin expression, is one target gene of HNF-1β. Knockdown of endogenous USP28 suppressed the Claspin expression and p-Chk1 activation and cell viability. Our findings identify a novel pathway of the HNF-1β-USP28-Claspin-Chk1 axis in checkpoint signal amplification in response to DNA damage. Targeting this pathway may represent a putative, novel, anticancer strategy in ovarian CCC.

  • Homo sapiens (Human)
  • Cancer Research
  • Genetics

Hepatocyte nuclear factor 1 beta induces transformation and epithelial-to-mesenchymal transition.

In FEBS Letters on 1 April 2016 by Matsui, A., Fujimoto, J., et al.

Gene amplification can be a cause of cancer, and driver oncogenes have been often identified in amplified regions. However, comprehensive analysis of other genes coamplified with an oncogene is rarely performed. We focused on the 17q12-21 amplicon, which contains ERBB2. We established a screening system for oncogenic activity with the NMuMG epithelial cell line. We identified a homeobox gene, HNF1B, as a novel cooperative transforming gene. HNF1B induced cancerous phenotypes, which were enhanced by the coexpression of ERBB2, and induced epithelial-to-mesenchymal transition and invasive phenotypes. These results suggest that HNF1B is a novel oncogene that can work cooperatively with ERBB2.
© 2016 Federation of European Biochemical Societies.

Modelling human development and disease in pluripotent stem-cell-derived gastric organoids.

In Nature on 18 December 2014 by McCracken, K. W., Catá, E. M., et al.

Gastric diseases, including peptic ulcer disease and gastric cancer, affect 10% of the world's population and are largely due to chronic Helicobacter pylori infection. Species differences in embryonic development and architecture of the adult stomach make animal models suboptimal for studying human stomach organogenesis and pathogenesis, and there is no experimental model of normal human gastric mucosa. Here we report the de novo generation of three-dimensional human gastric tissue in vitro through the directed differentiation of human pluripotent stem cells. We show that temporal manipulation of the FGF, WNT, BMP, retinoic acid and EGF signalling pathways and three-dimensional growth are sufficient to generate human gastric organoids (hGOs). Developing hGOs progressed through molecular and morphogenetic stages that were nearly identical to the developing antrum of the mouse stomach. Organoids formed primitive gastric gland- and pit-like domains, proliferative zones containing LGR5-expressing cells, surface and antral mucous cells, and a diversity of gastric endocrine cells. We used hGO cultures to identify novel signalling mechanisms that regulate early endoderm patterning and gastric endocrine cell differentiation upstream of the transcription factor NEUROG3. Using hGOs to model pathogenesis of human disease, we found that H. pylori infection resulted in rapid association of the virulence factor CagA with the c-Met receptor, activation of signalling and induction of epithelial proliferation. Together, these studies describe a new and robust in vitro system for elucidating the mechanisms underlying human stomach development and disease.

  • IF
  • Homo sapiens (Human)
  • Stem Cells and Developmental Biology

Lengthened G1 phase indicates differentiation status in human embryonic stem cells.

In Stem Cells and Development on 15 January 2013 by Calder, A., Roth-Albin, I., et al.

The cell cycle in pluripotent stem cells is notable for the brevity of the G1 phase, permitting rapid proliferation and reducing the duration of differentiation signal sensitivity associated with the G1 phase. Changes in the length of G1 phase are understood to accompany the differentiation of human embryonic stem cells (hESCs), but the timing and extent of such changes are poorly defined. Understanding the early steps governing the differentiation of hESCs will facilitate better control over differentiation for regenerative medicine and drug discovery applications. Here we report the first use of real-time cell cycle reporters in hESCs. We coexpressed the chromatin-decorating H2B-GFP fusion protein and the fluorescence ubiquitination cell cycle indicator (FUCCI)-G1 fusion protein, a G1 phase-specific reporter, in hESCs to measure the cell cycle status in live cells. We found that FUCCI-G1 expression is weakly detected in undifferentiated hESCs, but rapidly increases upon differentiation. hESCs in the G1 phase display a reduction in undifferentiated colony-initiating cell function, underscoring the relationship between G1 phase residence and differentiation. Importantly, we demonstrate inter- and intracolony variation in response to chemicals that induce differentiation, implying extensive cell-cell variation in the threshold necessary to alter the G1 phase length. Finally, gain of differentiation markers appears to be coincident with G1 phase lengthening, with distinct G1 phase profiles associated with different markers of early hESC differentiation. Our data demonstrate the tight coupling of cell cycle changes to hESC differentiation, and highlight the cell cycle reporter system and assays we have implemented as a novel avenue for investigating pluripotency and differentiation.

  • FC/FACS
  • Mus musculus (House mouse)
  • Stem Cells and Developmental Biology
View this product on CiteAb