Product Citations: 24

Stroma-derived Dickkopf-1 contributes to the suppression of NK cell cytotoxicity in breast cancer.

In Nature Communications on 30 January 2025 by Lee, S., Ricci, B., et al.

Mechanisms related to tumor evasion from NK cell-mediated immune surveillance remain enigmatic. Dickkopf-1 (DKK1) is a Wnt/β-catenin inhibitor, whose levels correlate with breast cancer progression. We find DKK1 to be expressed by tumor cells and cancer-associated fibroblasts (CAFs) in patient samples and orthotopic breast tumors, and in bone. By using genetic approaches, we find that bone-derived DKK1 contributes to the systemic DKK1 elevation in tumor-bearing female mice, while CAFs contribute to DKK1 at primary tumor site. Systemic and bone-specific DKK1 targeting reduce tumor growth. Intriguingly, deletion of CAF-derived DKK1 also limits breast cancer progression, without affecting its levels in circulation, and regardless of DKK1 expression in the tumor cells. While not directly supporting tumor proliferation, stromal-DKK1 suppresses NK cell activation and cytotoxicity by downregulating AKT/ERK/S6 phosphorylation. Importantly, increased DKK1 levels and reduced cytotoxic NK cells are detected in women with progressive breast cancer. Our findings indicate that DKK1 represents a barrier to anti-tumor immunity through suppression of NK cells.
© 2025. The Author(s).

  • Cancer Research

The Involvement of Cx43 in JNK1/2-Mediated Endothelial Mechanotransduction and Human Plaque Progression.

In International Journal of Molecular Sciences on 7 January 2023 by Tauchi, M., Oshita, K., et al.

Atherosclerotic lesions preferentially develop at bifurcations, characterized by non-uniform shear stress (SS). The aim of this study was to investigate SS-induced endothelial activation, focusing on stress-regulated mitogen-activated protein kinases (MAPK) and downstream signaling, and its relation to gap junction proteins, Connexins (Cxs). Human umbilical vein endothelial cells were exposed to flow ("mechanical stimulation") and stimulated with TNF-α ("inflammatory stimulation"). Phosphorylated levels of MAPKs (c-Jun N-terminal kinase (JNK1/2), extracellular signal-regulated kinase (ERK), and p38 kinase (p38K)) were quantified by flow cytometry, showing the activation of JNK1/2 and ERK. THP-1 cell adhesion under non-uniform SS was suppressed by the inhibition of JNK1/2, not of ERK. Immunofluorescence staining and quantitative real-time PCR demonstrated an induction of c-Jun and c-Fos and of Cx43 in endothelial cells by non-uniform SS, and the latter was abolished by JNK1/2 inhibition. Furthermore, plaque inflammation was analyzed in human carotid plaques (n = 40) using immunohistochemistry and quanti-gene RNA-assays, revealing elevated Cx43+ cell counts in vulnerable compared to stable plaques. Cx43+ cell burden in the plaque shoulder correlated with intraplaque neovascularization and lipid core size, while an inverse correlation was observed with fibrous cap thickness. Our results constitute the first report that JNK1/2 mediates Cx43 mechanoinduction in endothelial cells by atheroprone shear stress and that Cx43 is expressed in human carotid plaques. The correlation of Cx43+ cell counts with markers of plaque vulnerability implies its contribution to plaque progression.

  • FC/FACS
  • Homo sapiens (Human)

Dendritic cell Piezo1 directs the differentiation of TH1 and Treg cells in cancer.

In eLife on 22 August 2022 by Wang, Y., Yang, H., et al.

Dendritic cells (DCs) play an important role in anti-tumor immunity by inducing T cell differentiation. Herein, we found that the DC mechanical sensor Piezo1 stimulated by mechanical stiffness or inflammatory signals directs the reciprocal differentiation of TH1 and regulatory T (Treg) cells in cancer. Genetic deletion of Piezo1 in DCs inhibited the generation of TH1 cells while driving the development of Treg cells in promoting cancer growth in mice. Mechanistically, Piezo1-deficient DCs regulated the secretion of the polarizing cytokines TGFβ1 and IL-12, leading to increased TGFβR2-p-Smad3 activity and decreased IL-12Rβ2-p-STAT4 activity while inducing the reciprocal differentiation of Treg and TH1 cells. In addition, Piezo1 integrated the SIRT1-hypoxia-inducible factor-1 alpha (HIF1α)-dependent metabolic pathway and calcium-calcineurin-NFAT signaling pathway to orchestrate reciprocal TH1 and Treg lineage commitment through DC-derived IL-12 and TGFβ1. Our studies provide critical insight for understanding the role of the DC-based mechanical regulation of immunopathology in directing T cell lineage commitment in tumor microenvironments.
© 2022, Wang, Yang, Jia et al.

  • Cancer Research
  • Immunology and Microbiology

Dendritic cells (DCs) play an important role in anti-tumor immunity by inducing T cell differentiation. Herein, we found that the mechanical sensor Piezo1 expressed by DCs integrates innate inflammatory stimuli and stiffness signals and directs the reciprocal differentiation of T H 1 and regulatory T (T reg ) cells in cancer. Genetic deletion of Piezo1 in DCs inhibited the generation of T H 1 cells while driving the development of T reg cells in promoting cancer growth. Mechanistically, Piezo1-deficient DCs regulated the secretion of the polarizing cytokines TGFβ1 and IL-12, leading to increased TGFβR2-p-Smad3 activity and decreased IL-12Rβ2-p-STAT4 activity while inducing the reciprocal differentiation of T reg and T H 1 cells. In addition, Piezo1 integrated the SIRT1-hypoxia-inducible factor-1 alpha (HIF1α)-dependent metabolic pathway and calcium-calcineurin-NFAT signaling pathway to orchestrate reciprocal T H 1 and T reg lineage commitment through DC-derived IL-12 and TGFβ1. Our studies provide critical insight for understanding the role of the DC-based mechanical regulation of immunopathology in directing T cell lineage commitment in tumor microenvironments.

  • Cancer Research
  • Immunology and Microbiology

An imbalance of the IL-33/ST2-AXL-efferocytosis axis induces pregnancy loss through metabolic reprogramming of decidual macrophages.

In Cellular and Molecular Life Sciences : CMLS on 4 March 2022 by Sheng, Y. R., Hu, W. T., et al.

During embryo implantation, apoptosis is inevitable. These apoptotic cells (ACs) are removed by efferocytosis, in which macrophages are filled with a metabolite load nearly equal to the phagocyte itself. A timely question pertains to the relationship between efferocytosis-related metabolism and the immune behavior of decidual macrophages (dMΦs) and its effect on pregnancy outcome. Here, we report positive feedback of IL-33/ST2-AXL-efferocytosis leading to pregnancy failure through metabolic reprogramming of dMΦs. We compared the serum levels of IL-33 and sST2, along with IL-33 and ST2, efferocytosis and metabolism of dMΦs, from patients with normal pregnancies and unexplained recurrent pregnancy loss (RPL). We revealed disruption of the IL-33/ST2 axis, increased apoptotic cells and elevated efferocytosis of dMΦs from patients with RPL. The dMΦs that engulfed many apoptotic cells secreted more sST2 and less TGF-β, which polarized dMΦs toward the M1 phenotype. Moreover, the elevated sST2 biased the efferocytosis-related metabolism of RPL dMΦs toward oxidative phosphorylation and exacerbated the disruption of the IL-33/ST2 signaling pathway. Metabolic disorders also lead to dysfunction of efferocytosis, resulting in more uncleared apoptotic cells and secondary necrosis. We also screened the efferocytotic molecule AXL regulated by IL-33/ST2. This positive feedback axis of IL-33/ST2-AXL-efferocytosis led to pregnancy failure. IL-33 knockout mice demonstrated poor pregnancy outcomes, and exogenous supplementation with mouse IL-33 reduced the embryo losses. These findings highlight a new etiological mechanism whereby dMΦs leverage immunometabolism for homeostasis of the microenvironment at the maternal-fetal interface.
© 2022. The Author(s), under exclusive licence to Springer Nature Switzerland AG.

  • Biochemistry and Molecular biology
  • Cell Biology
  • Endocrinology and Physiology
View this product on CiteAb