Product Citations: 16

Aspirin prevents metastasis by limiting platelet TXA2 suppression of T cell immunity.

In Nature on 1 April 2025 by Yang, J., Yamashita-Kanemaru, Y., et al.

Metastasis is the spread of cancer cells from primary tumours to distant organs and is the cause of 90% of cancer deaths globally1,2. Metastasizing cancer cells are uniquely vulnerable to immune attack, as they are initially deprived of the immunosuppressive microenvironment found within established tumours3. There is interest in therapeutically exploiting this immune vulnerability to prevent recurrence in patients with early cancer at risk of metastasis. Here we show that inhibitors of cyclooxygenase 1 (COX-1), including aspirin, enhance immunity to cancer metastasis by releasing T cells from suppression by platelet-derived thromboxane A2 (TXA2). TXA2 acts on T cells to trigger an immunosuppressive pathway that is dependent on the guanine exchange factor ARHGEF1, suppressing T cell receptor-driven kinase signalling, proliferation and effector functions. T cell-specific conditional deletion of Arhgef1 in mice increases T cell activation at the metastatic site, provoking immune-mediated rejection of lung and liver metastases. Consequently, restricting the availability of TXA2 using aspirin, selective COX-1 inhibitors or platelet-specific deletion of COX-1 reduces the rate of metastasis in a manner that is dependent on T cell-intrinsic expression of ARHGEF1 and signalling by TXA2 in vivo. These findings reveal a novel immunosuppressive pathway that limits T cell immunity to cancer metastasis, providing mechanistic insights into the anti-metastatic activity of aspirin and paving the way for more effective anti-metastatic immunotherapies.
© 2025. The Author(s).

  • Cancer Research
  • Immunology and Microbiology

Immune targeting and host-protective effects of the latent stage of Toxoplasma gondii.

In Nature Microbiology on 1 April 2025 by Eberhard, J. N., Shallberg, L. A., et al.

Latency is a microbial strategy for persistence. For Toxoplasma gondii the bradyzoite stage forms long-lived cysts critical for transmission, and its presence in neurons is considered important for immune evasion. However, the extent to which cyst formation escapes immune pressure and mediates persistence remained unclear. Here we developed a mathematical model highlighting that bradyzoite-directed immunity contributes to control of cyst numbers. In vivo studies demonstrated that transgenic CD8+ T cells recognized a cyst-derived antigen, and neuronal STAT1 signalling promoted cyst control in mice. Modelling and experiments with parasites unable to form bradyzoites (Δbfd1) revealed that the absence of cyst formation in the central nervous system did not prevent long-term persistence but resulted in increased tachyzoite replication with associated tissue damage and mortality. These findings suggest the latent form of T. gondii is under immune pressure, mitigates infection-induced damage and promotes survival of host and parasite.
© 2025. The Author(s).

  • Immunology and Microbiology

The pro-tumoral and anti-tumoral roles of EphA4 on T regulatory cells and tumor associated macrophages during HNSCC tumor progression

Preprint on BioRxiv : the Preprint Server for Biology on 13 August 2024 by Corbo, S., Nguyen, D., et al.

Head and Neck Squamous Cell Carcinoma (HNSCC) is a deadly cancer with poor response to targeted therapy, largely driven by an immunosuppressive tumor microenvironment (TME). Here we examine the immune-modulatory role of the receptor tyrosine kinase EphA4 in HNSCC progression. Within the TME, EphA4 is primarily expressed on regulatory T cells (Tregs) and macrophages. In contrast ephrinB2, an activating ligand of EphA4, is expressed in tumor blood vessels. Using genetically engineered mouse models, we show that EphA4 expressed in Tregs promotes tumor growth, whereas EphA4 expressed in monocytes inhibits tumor growth. In contrast, ephrinB2 knockout in blood vessels reduces both intratumoral Tregs and macrophages. A novel specific EphA4 inhibitor, APY-d3-PEG4, reverses the accelerated tumor growth we had previously reported with EphB4 cancer cell knockout. EphA4 knockout in macrophages not only enhanced their differentiation into M2 macrophage but also increased Treg suppressive activity. APY-d3-PEG4 reversed the accelerated growth seen in the EphA4 knockout of monocytes but conferred no additional benefit when EphA4 was knocked out on Tregs. Underscoring an EphA4-mediated interplay between Tregs and macrophages, we found that knockout of EphA4 in Tregs not only decreases their activation but also reduces tumor infiltration of pro-tumoral M2 macrophages. These data identify Tregs as a primary target of APY-d3-PEG4 and suggest a role for Tregs in regulating macrophage conversion. These data also support the possible anti-cancer therapeutic value of bispecific peptides or antibodies capable of promoting EphA4 blockade in Tregs but not macrophages. Significance EphA4 in regulatory T cells has a pro-tumoral effect while EphA4 in macrophages plays an anti-tumoral role underscoring the necessity of developing biologically rational therapeutics.

  • Mus musculus (House mouse)
  • Cancer Research

Sensory nerve release of CGRP increases tumor growth in HNSCC by suppressing TILs.

In Med (New York, N.Y.) on 8 March 2024 by Darragh, L. B., Nguyen, A., et al.

Perineural invasion (PNI) and nerve density within the tumor microenvironment (TME) have long been associated with worse outcomes in head and neck squamous cell carcinoma (HNSCC). This prompted an investigation into how nerves within the tumor microenvironment affect the adaptive immune system and tumor growth.
We used RNA sequencing analysis of human tumor tissue from a recent HNSCC clinical trial, proteomics of human nerves from HNSCC patients, and syngeneic orthotopic murine models of HPV-unrelated HNSCC to investigate how sensory nerves modulate the adaptive immune system.
Calcitonin gene-related peptide (CGRP) directly inhibited CD8 T cell activity in vitro, and blocking sensory nerve function surgically, pharmacologically, or genetically increased CD8 and CD4 T cell activity in vivo.
Our data support sensory nerves playing a role in accelerating tumor growth by directly acting on the adaptive immune system to decrease Th1 CD4 T cells and activated CD8 T cells in the TME. These data support further investigation into the role of sensory nerves in the TME of HNSCC and points toward the possible treatment efficacy of blocking sensory nerve function or specifically inhibiting CGRP release or activity within the TME to improve outcomes.
1R01DE028282-01, 1R01DE028529-01, 1P50CA261605-01 (to S.D.K.), 1R01CA284651-01 (to S.D.K.), and F31 DE029997 (to L.B.D.).
Copyright © 2024 Elsevier Inc. All rights reserved.

  • Cancer Research
  • Neuroscience

The implementation of cancer immunotherapies has seen limited clinical success in head and neck squamous cell carcinoma (HNSCC). Interleukin-2 (IL-2), which modulates the survival and functionality of lymphocytes, is an attractive target for new immunotherapies but one that is limited by presence of regulatory T cells (Tregs) expressing the high-affinity IL-2Rα. The bispecific immunocytokine PD1-IL2v preferentially delivers IL-2 signaling through IL-2Rβγ on PD-1-expressing cells. Selectively targeting the intermediate-affinity IL-2Rβγ can be leveraged to induce anti-tumor immune responses in effector T cells and natural killer (NK) cells while limiting the negative regulation of IL-2Rα activation on Tregs. Using radiation therapy (RT) in combination with PD1-IL2v improves local tumor control and survival, and controls metastatic spread in orthotopic HNSCC tumor models. PD1-IL2v drives systemic activation and expansion of circulating and tumor-infiltrating cytotoxic T cells and NK cells while limiting Treg-mediated immunosuppression. These data show that PD1-L2v induces durable systemic tumor control in HNSCC.
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.

  • FC/FACS
  • Mus musculus (House mouse)
  • Cancer Research
  • Immunology and Microbiology
View this product on CiteAb