Product Citations: 41

The adoptive transfer of T cells expressing chimeric antigen receptors (CARs) is effective in B cell malignancies. However, the persistence of cancer cells with low levels or complete absence of the target antigen, thereby evading detection by CAR T cells, leads to relapse. These evasion mechanisms highlight the need for receptors with enhanced sensitivity and multispecificity. We introduce a synthetic chimeric T cell receptor (ChTCR) that confers superior antigen sensitivity compared with CARS and previous hybrid TCR designs and is readily adapted for bispecific targeting. ChTCRs replicate the structure of natural TCRs, form classical immune synapses and demonstrate TCR-like signaling. T cells expressing bispecific ChTCRs (Bi-ChTCRs) are more effective than bispecific CAR T cells in eradicating tumors with heterogeneous antigen expression in vivo in female mice. The Bi-ChTCR architecture is resilient and can be designed to target pairs of B cell and multiple myeloma antigens. These findings provide a widely applicable strategy to combat tumor heterogeneity and prevent relapse.
© 2025. The Author(s).

  • Cancer Research
  • Immunology and Microbiology

Nonclinical characterization of ICVB-1042 as a selective oncolytic adenovirus for solid tumor treatment.

In Communications Biology on 13 September 2024 by Kato, Y., Rice, N., et al.

ICVB-1042 is an oncolytic adenovirus containing modifications to enhance replication, lysis, and viral spreading in tumor cells. The anti-tumor activity, immune activation, tropism, selectivity, and mechanism of action were evaluated in preparation for a first-in-human study. ICVB-1042 was at least 100-fold more cytotoxic in A549 cells than in normal primary cells tested, demonstrating its high tumor selectivity and a low likelihood of targeting primary tissues. ICVB-1042 administered to mice intravenously or intratumorally was effective in reducing tumor burden. Its intravenous administration also inhibited tumor growth in orthotopic models. ICVB-1042 was well tolerated in mice compared to HAdV-C5 (Wt Ad5), with reduced liver sequestration, supporting safety of the drug for systemic delivery. These preclinical data demonstrating the safety and potency of ICVB-1042 for treatment of various solid tumors support the ongoing clinical investigation (NCT05904236).
© 2024. The Author(s).

  • FC/FACS
  • Homo sapiens (Human)
  • Cancer Research

Tuberculosis in otherwise healthy adults with inherited TNF deficiency.

In Nature on 1 September 2024 by Arias, A. A., Neehus, A. L., et al.

Severe defects in human IFNγ immunity predispose individuals to both Bacillus Calmette-Guérin disease and tuberculosis, whereas milder defects predispose only to tuberculosis1. Here we report two adults with recurrent pulmonary tuberculosis who are homozygous for a private loss-of-function TNF variant. Neither has any other clinical phenotype and both mount normal clinical and biological inflammatory responses. Their leukocytes, including monocytes and monocyte-derived macrophages (MDMs) do not produce TNF, even after stimulation with IFNγ. Blood leukocyte subset development is normal in these patients. However, an impairment in the respiratory burst was observed in granulocyte-macrophage colony-stimulating factor (GM-CSF)-matured MDMs and alveolar macrophage-like (AML) cells2 from both patients with TNF deficiency, TNF- or TNFR1-deficient induced pluripotent stem (iPS)-cell-derived GM-CSF-matured macrophages, and healthy control MDMs and AML cells differentiated with TNF blockers in vitro, and in lung macrophages treated with TNF blockers ex vivo. The stimulation of TNF-deficient iPS-cell-derived macrophages with TNF rescued the respiratory burst. These findings contrast with those for patients with inherited complete deficiency of the respiratory burst across all phagocytes, who are prone to multiple infections, including both Bacillus Calmette-Guérin disease and tuberculosis3. Human TNF is required for respiratory-burst-dependent immunity to Mycobacterium tuberculosis in macrophages but is surprisingly redundant otherwise, including for inflammation and immunity to weakly virulent mycobacteria and many other infectious agents.
© 2024. The Author(s).

Human organoids with an autologous tissue-resident immune compartment.

In Nature on 1 September 2024 by Recaldin, T., Steinacher, L., et al.

The intimate relationship between the epithelium and immune system is crucial for maintaining tissue homeostasis, with perturbations therein linked to autoimmune disease and cancer1-3. Whereas stem cell-derived organoids are powerful models of epithelial function4, they lack tissue-resident immune cells that are essential for capturing organ-level processes. We describe human intestinal immuno-organoids (IIOs), formed through self-organization of epithelial organoids and autologous tissue-resident memory T (TRM) cells, a portion of which integrate within the epithelium and continuously survey the barrier. TRM cell migration and interaction with epithelial cells was orchestrated by TRM cell-enriched transcriptomic programs governing cell motility and adhesion. We combined IIOs and single-cell transcriptomics to investigate intestinal inflammation triggered by cancer-targeting biologics in patients. Inflammation was associated with the emergence of an activated population of CD8+ T cells that progressively acquired intraepithelial and cytotoxic features. The appearance of this effector population was preceded and potentiated by a T helper-1-like CD4+ population, which initially produced cytokines and subsequently became cytotoxic itself. As a system amenable to direct perturbation, IIOs allowed us to identify the Rho pathway as a new target for mitigation of immunotherapy-associated intestinal inflammation. Given that they recapitulate both the phenotypic outcomes and underlying interlineage immune interactions, IIOs can be used to study tissue-resident immune responses in the context of tumorigenesis and infectious and autoimmune diseases.
© 2024. The Author(s).

  • Homo sapiens (Human)
  • Immunology and Microbiology

Epstein-Barr virus (EBV) is associated with infectious mononucleosis, cancer, and multiple sclerosis. A vaccine that prevents infection and/or EBV-associated morbidity is an unmet need. The viral gH/gL glycoprotein complex is essential for infectivity, making it an attractive vaccine target. Here, we evaluate the immunogenicity of a gH/gL nanoparticle vaccine adjuvanted with the Sigma Adjuvant System (SAS) or a saponin/monophosphoryl lipid A nanoparticle (SMNP) in rhesus macaques. Formulation with SMNP elicits higher titers of neutralizing antibodies and more vaccine-specific CD4+ T cells. All but one animal in the SMNP group were infected after oral challenge with the EBV ortholog rhesus lymphocryptovirus (rhLCV). Their immune plasma had a 10- to 100-fold lower reactivity against rhLCV gH/gL compared to EBV gH/gL. Anti-EBV neutralizing monoclonal antibodies showed reduced binding to rhLCV gH/gL, demonstrating that EBV gH/gL neutralizing epitopes are poorly conserved on rhLCV gH/gL. Prevention of rhLCV infection despite antigenic disparity supports clinical development of gH/gL nanoparticle vaccines against EBV.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.

  • FC/FACS
  • Immunology and Microbiology
View this product on CiteAb