Product citations: 7

Powered by

Targeting Cytotoxic Agents through EGFR-Mediated Covalent Binding and Release.

In Journal of Medicinal Chemistry on 14 September 2023 by Morese, P. A., Anthony, N., et al.

A major drawback of cytotoxic chemotherapy is the lack of selectivity toward noncancerous cells. The targeted delivery of cytotoxic drugs to tumor cells is a longstanding goal in cancer research. We proposed that covalent inhibitors could be adapted to deliver cytotoxic agents, conjugated to the β-position of the Michael acceptor, via an addition-elimination mechanism promoted by covalent binding. Studies on model systems showed that conjugated 5-fluorouracil (5FU) could be released upon thiol addition in relevant time scales. A series of covalent epidermal growth factor receptor (EGFR) inhibitors were synthesized as their 5FU derivatives. Achieving the desired release of 5FU was demonstrated to depend on the electronics and geometry of the compounds. Mass spectrometry and NMR studies demonstrated an anilinoquinazoline acrylate ester conjugate bound to EGFR with the release of 5FU. This work establishes that acrylates can be used to release conjugated molecules upon covalent binding to proteins and could be used to develop targeted therapeutics.

State-selective modulation of heterotrimeric Gαs signaling with macrocyclic peptides.

In Cell on 13 October 2022 by Dai, S. A., Hu, Q., et al.

The G protein-coupled receptor cascade leading to production of the second messenger cAMP is replete with pharmacologically targetable proteins, with the exception of the Gα subunit, Gαs. GTPases remain largely undruggable given the difficulty of displacing high-affinity guanine nucleotides and the lack of other drug binding sites. We explored a chemical library of 1012 cyclic peptides to expand the chemical search for inhibitors of this enzyme class. We identified two macrocyclic peptides, GN13 and GD20, that antagonize the active and inactive states of Gαs, respectively. Both macrocyclic peptides fine-tune Gαs activity with high nucleotide-binding-state selectivity and G protein class-specificity. Co-crystal structures reveal that GN13 and GD20 distinguish the conformational differences within the switch II/α3 pocket. Cell-permeable analogs of GN13 and GD20 modulate Gαs/Gβγ signaling in cells through binding to crystallographically defined pockets. The discovery of cyclic peptide inhibitors targeting Gαs provides a path for further development of state-dependent GTPase inhibitors.
Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.

Pharmacological inhibition of prolyl-4-hydroxylase domain (PHD) enzymes stabilizes hypoxia-inducible factors (HIFs), transcription factors that activate target genes that, among others, increase erythropoietin (EPO) synthesis, resulting in the production of new red blood cells (RBCs). Herein, we summarize the preclinical characteristics of the small molecule HIF prolyl-4-hydroxylase inhibitor vadadustat (AKB-6548), which is in development for the treatment of anemia in patients with chronic kidney disease (CKD). Vadadustat inhibits the enzyme activity of all three human PHD isozymes, PHD1, PHD2, and PHD3, with similar low nanomolar inhibitory constant values. PHD enzyme inhibition by vadadustat is competitive with endogenous cofactor 2-oxoglutarate and is insensitive to free iron concentration. In the human hepatocellular carcinoma cell line (Hep 3B) and human umbilical vein endothelial cells, PHD inhibition by vadadustat leads to the time- and concentration-dependent stabilization of HIF-1α and HIF-2α In Hep 3B cells, this in turn results in the synthesis and secretion of EPO; vascular endothelial growth factor is not measured at detectable levels. A single oral dose of vadadustat in rats potently increases circulating levels of EPO, and daily oral dosing for 14 days increases RBC indices in healthy rats and in the 5/6 nephrectomy model of CKD. In mice and dogs, once-daily repeat oral dosing increases hemoglobin and hematocrit. Vadadustat has a relatively short half-life in all nonclinical species evaluated and does not accumulate when administered as a single bolus dose (oral or intravenous) or upon repeat oral dosing. The pharmacological profile of vadadustat supports continued development for treatment of renal anemia. SIGNIFICANCE STATEMENT: Vadadustat (AKB-6548) is an orally bioavailable small molecule prolyl-4-hydroxylase inhibitor in development for anemia of chronic kidney disease. It is an equipotent inhibitor of the three human prolyl-4-hydroxylase domain isoforms, which activates erythropoiesis through stabilization of hypoxia-inducible factor (HIF)-1α and HIF-2α, increasing production of erythropoietin, without detectable stimulation of vascular endothelial growth factor.
Copyright © 2022 The Author(s).

Structural basis for the allosteric inhibition of hypoxia-inducible factor (HIF)-2 by belzutifan.

In Molecular Pharmacology on 27 September 2022 by Ren, X., Diao, X., et al.

Hypoxia-inducible factor (HIF)-2α and its obligate heterodimerization partner aryl hydrocarbon receptor nuclear translocator (ARNT), are both members of the basic helix-loop-helix-PER-ARNT-SIM (bHLH-PAS) transcription factor family. Previous studies have identified HIF-2α as a key oncogenic driver in clear cell renal cell carcinoma (ccRCC), rendering it a promising drug target for this type of kidney cancer. Belzutifan is the first HIF-2α inhibitor approved for treating ccRCC and other cancers associated with the von Hippel-Lindau (VHL) disease. However, the detailed inhibitory mechanism of belzutifan at molecular level is still unclear. Here we obtained the crystal structure of HIF-2α-ARNT heterodimer in complex with belzutifan at 2.75 Å resolution. The complex structure shows that belzutifan binds into the PAS-B pocket of HIF-2α, and it destabilizes the dimerization of HIF-2α and ARNT through allosteric effects mainly mediated by the key residue M252 of HIF-2α near the dimer interface. We further explored the inhibitory effects of belzutifan using biochemical and functional assays. The time-resolved fluorescence energy transfer (TR-FRET)-based binding assay showed that belzutifan disrupts the dimerization of HIF-2α and ARNT with a Ki value of 20 nM. The luciferase reporter assay indicated that belzutifan can efficiently inhibit the transcriptional activity of HIF-2α with an IC50 value of 17 nM. Besides, the real-time PCR assay illustrated that belzutifan can reduce the expression of HIF-2α downstream genes in 786-O kidney cancer cells in a dose-dependent manner. Our work reveals the molecular mechanism by which belzutifan allosterically inhibits HIF-2α and provides valuable information for the subsequent drug development targeting HIF-2α. Significance Statement The bHLH-PAS family of transcription factors are an emerging group of small-molecule drug targets. Belzutifan, originally developed by Peloton Therapeutics, is the first FDA-approved drug directly binding to a bHLH-PAS protein, the hypoxia-inducible factor (HIF)-2α. Based on the protein-drug complex structure, biochemical binding assays, and functional profiling of downstream gene expression, this study reveals the regulatory mechanism of how belzutifan allosterically destabilizes HIF-2α's heterodimerization with its obligate partner protein, thus reducing their transcriptional activity that links to tumor progression.
Copyright © 2020 American Society for Pharmacology and Experimental Therapeutics.

Identification of oleoylethanolamide as an endogenous ligand for HIF-3α.

In Nature Communications on 9 May 2022 by Diao, X., Ye, F., et al.

Hypoxia-inducible factors (HIFs) are α/β heterodimeric transcription factors modulating cellular responses to the low oxygen condition. Among three HIF-α isoforms, HIF-3α is the least studied to date. Here we show that oleoylethanolamide (OEA), a physiological lipid known to regulate food intake and metabolism, binds selectively to HIF-3α. Through crystallographic analysis of HIF-3 α/β heterodimer in both apo and OEA-bound forms, hydrogen-deuterium exchange mass spectrometry (HDX-MS), molecular dynamics (MD) simulations, and biochemical and cell-based assays, we unveil the molecular mechanism of OEA entry and binding to the PAS-B pocket of HIF-3α, and show that it leads to enhanced heterodimer stability and functional modulation of HIF-3. The identification of HIF-3α as a selective lipid sensor is consistent with recent human genetic findings linking HIF-3α with obesity, and demonstrates that endogenous metabolites can directly interact with HIF-α proteins to modulate their activities, potentially as a regulatory mechanism supplementary to the well-known oxygen-dependent HIF-α hydroxylation.
© 2022. The Author(s).

View this product on CiteAb