Product citations: 7

Powered by

S-phase kinase associated protein 2 (Skp2), a member of the F-box family that constitute the largest known class of ubiquitin E3 specificity components, is responsible for recognizing and recruiting cyclin-dependent kinase inhibitor p27 for its ubiquitination in the presence of the small accessory protein cyclin-dependent kinase regulatory subunit 1(Cks1). Skp2 is overexpressed in esophageal carcinoma tissues and closely related with tumor poor prognosis, and perturbation of the Skp2-Cks1 interaction by inhibitors or RNAi could inhibit the proliferation and metastasis of tumor cells. Therefore, inhibition of Skp2 function by small-molecule compounds targeting Skp2-Cks1 interaction is emerging as a promising and novel anti-cancer strategy. In this study, we establish an improved high-throughput screening platform to screen Skp2 inhibitors targeting Skp2-Cks1interaction, which may provide a new therapeutic approach for the clinic.
© 2021. The Author(s).

Sialic acid mediated mechanical activation of β2 adrenergic receptors by bacterial pili.

In Nature Communications on 18 October 2019 by Virion, Z., Doly, S., et al.

Meningococcus utilizes β-arrestin selective activation of endothelial cell β2 adrenergic receptor (β2AR) to cause meningitis in humans. Molecular mechanisms of receptor activation by the pathogen and of its species selectivity remained elusive. We report that β2AR activation requires two asparagine-branched glycan chains with terminally exposed N-acetyl-neuraminic acid (sialic acid, Neu5Ac) residues located at a specific distance in its N-terminus, while being independent of surrounding amino-acid residues. Meningococcus triggers receptor signaling by exerting direct and hemodynamic-promoted traction forces on β2AR glycans. Similar activation is recapitulated with beads coated with Neu5Ac-binding lectins, submitted to mechanical stimulation. This previously unknown glycan-dependent mode of allosteric mechanical activation of a G protein-coupled receptor contributes to meningococcal species selectivity, since Neu5Ac is only abundant in humans due to the loss of CMAH, the enzyme converting Neu5Ac into N-glycolyl-neuraminic acid in other mammals. It represents an additional mechanism of evolutionary adaptation of a pathogen to its host.

Structure-based design of small-molecule inhibitors of EBNA1 DNA binding blocks Epstein-Barr virus latent infection and tumor growth.

In Science Translational Medicine on 6 March 2019 by Messick, T. E., Smith, G. R., et al.

Epstein-Barr virus (EBV) is a DNA tumor virus responsible for 1 to 2% of human cancers including subtypes of Burkitt's lymphoma, Hodgkin's lymphoma, gastric carcinoma, and nasopharyngeal carcinoma (NPC). Persistent latent infection drives EBV-associated tumorigenesis. Epstein-Barr nuclear antigen 1 (EBNA1) is the only viral protein consistently expressed in all EBV-associated tumors and is therefore an attractive target for therapeutic intervention. It is a multifunctional DNA binding protein critical for viral replication, genome maintenance, viral gene expression, and host cell survival. Using a fragment-based approach and x-ray crystallography, we identify a 2,3-disubstituted benzoic acid series that selectively inhibits the DNA binding activity of EBNA1. We characterize these inhibitors biochemically and in cell-based assays, including chromatin immunoprecipitation and DNA replication assays. In addition, we demonstrate the potency of EBNA1 inhibitors to suppress tumor growth in several EBV-dependent xenograft models, including patient-derived xenografts for NPC. These inhibitors selectively block EBV gene transcription and alter the cellular transforming growth factor-β (TGF-β) signaling pathway in NPC tumor xenografts. These EBNA1-specific inhibitors show favorable pharmacological properties and have the potential to be further developed for the treatment of EBV-associated malignancies.
Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

Pharmacological Induction of RAS-GTP Confers RAF Inhibitor Sensitivity in KRAS Mutant Tumors.

In Cancer Cell on 8 October 2018 by Yen, I., Shanahan, F., et al.

Targeting KRAS mutant tumors through inhibition of individual downstream pathways has had limited clinical success. Here we report that RAF inhibitors exhibit little efficacy in KRAS mutant tumors. In combination drug screens, MEK and PI3K inhibitors synergized with pan-RAF inhibitors through an RAS-GTP-dependent mechanism. Broad cell line profiling with RAF/MEK inhibitor combinations revealed synergistic efficacy in KRAS mutant and wild-type tumors, with KRASG13D mutants exhibiting greater synergy versus KRASG12 mutant tumors. Mechanistic studies demonstrate that MEK inhibition induced RAS-GTP levels, RAF dimerization and RAF kinase activity resulting in MEK phosphorylation in synergistic tumor lines regardless of KRAS status. Taken together, our studies uncover a strategy to rewire KRAS mutant tumors to confer sensitivity to RAF kinase inhibition.
Copyright © 2018 Elsevier Inc. All rights reserved.

BAP1 induces cell death via interaction with 14-3-3 in neuroblastoma.

In Cell Death & Disease on 1 May 2018 by Sime, W., Niu, Q., et al.

BRCA1-associated protein 1 (BAP1) is a nuclear deubiquitinating enzyme that is associated with multiprotein complexes that regulate key cellular pathways, including cell cycle, cellular differentiation, cell death, and the DNA damage response. In this study, we found that the reduced expression of BAP1 pro6motes the survival of neuroblastoma cells, and restoring the levels of BAP1 in these cells facilitated a delay in S and G2/M phase of the cell cycle, as well as cell apoptosis. The mechanism that BAP1 induces cell death is mediated via an interaction with 14-3-3 protein. The association between BAP1 and 14-3-3 protein releases the apoptotic inducer protein Bax from 14-3-3 and promotes cell death through the intrinsic apoptosis pathway. Xenograft studies confirmed that the expression of BAP1 reduces tumor growth and progression in vivo by lowering the levels of pro-survival factors such as Bcl-2, which in turn diminish the survival potential of the tumor cells. Patient data analyses confirmed the finding that the high-BAP1 mRNA expression correlates with a better clinical outcome. In summary, our study uncovers a new mechanism for BAP1 in the regulation of cell apoptosis in neuroblastoma cells.

View this product on CiteAb