Product citations: 4

Powered by

Nafamostat is a Potent Human Diamine Oxidase Inhibitor Possibly Augmenting Hypersensitivity Reactions during Nafamostat Administration.

In The Journal of Pharmacology and Experimental Therapeutics on 1 August 2022 by Boehm, T., Alix, M., et al.

Nafamostat is an approved short-acting serine protease inhibitor. However, its administration is also associated with anaphylactic reactions. One mechanism to augment hypersensitivity reactions could be inhibition of diamine oxidase (DAO). The chemical structure of nafamostat is related to the potent DAO inhibitors pentamidine and diminazene. Therefore, we tested whether nafamostat is a human DAO inhibitor. Using different activity assays, nafamostat reversibly inhibited recombinant human DAO with an IC50 of 300-400 nM using 200 µM substrate concentrations. The Ki of nafamostat for the inhibition of putrescine and histamine deamination is 27 nM and 138 nM, respectively For both substrates, nafamostat is a mixed mode inhibitor with P values of <0.01 compared with other inhibition types. Using 80-90% EDTA plasma, the IC50 of nafamostat inhibition was approximately 360 nM using 20 µM cadaverine. In 90% EDTA plasma, the IC50 concentrations were 2-3 µM using 0.9 µM and 0.18 µM histamine as substrate. In silico modeling showed a high overlap compared with published diminazene crystallography data, with a preferred orientation of the guanidine group toward topaquinone. In conclusion, nafamostat is a potent human DAO inhibitor and might increase severity of anaphylactic reaction by interfering with DAO-mediated extracellular histamine degradation. SIGNIFICANCE STATEMENT: Treatment with the short-acting anticoagulant nafamostat during hemodialysis, leukocytapheresis, extracorporeal membrane oxygenator procedures, and disseminated intravascular coagulation is associated with severe anaphylaxis in humans. Histamine is a central mediator in anaphylaxis. Potent inhibition of the only extracellularly histamine-degrading enzyme diamine oxidase could augment anaphylaxis reactions during nafamostat treatment.Copyright © 2022 by The American Society for Pharmacology and Experimental Therapeutics.

Diamine oxidase knockout mice are not hypersensitive to orally or subcutaneously administered histamine.

In Inflammation Research : Official Journal of the European Histamine Research Society ... [et Al.] on 1 April 2022 by Karer, M., Rager-Resch, M., et al.

To evaluate the contribution of endogenous diamine oxidase (DAO) in the inactivation of exogenous histamine, to find a mouse strain with increased histamine sensitivity and to test the efficacy of rhDAO in a histamine challenge model.
Diamine oxidase knockout (KO) mice were challenged with orally and subcutaneously administered histamine in combination with the β-adrenergic blocker propranolol, with the two histamine-N-methyltransferase (HNMT) inhibitors metoprine and tacrine, with folic acid to mimic acute kidney injury and treated with recombinant human DAO. Core body temperature was measured using a subcutaneously implanted microchip and histamine plasma levels were quantified using a homogeneous time resolved fluorescence assay.
Core body temperature and plasma histamine levels were not significantly different between wild type (WT) and DAO KO mice after oral and subcutaneous histamine challenge with and without acute kidney injury or administration of HNMT inhibitors. Treatment with recombinant human DAO reduced the mean area under the curve (AUC) for core body temperature loss by 63% (p = 0.002) and the clinical score by 88% (p < 0.001). The AUC of the histamine concentration was reduced by 81%.
Inactivation of exogenous histamine is not driven by enzymatic degradation and kidney filtration. Treatment with recombinant human DAO strongly reduced histamine-induced core body temperature loss, histamine concentrations and prevented the development of severe clinical symptoms.
© 2022. The Author(s).

Excessive plasma histamine concentrations cause symptoms in mast cell activation syndrome, mastocytosis, or anaphylaxis. Anti-histamines are often insufficiently efficacious. Human diamine oxidase (hDAO) can rapidly degrade histamine and therefore represents a promising new treatment strategy for conditions with pathological histamine concentrations.
Positively charged amino acids of the heparin-binding motif of hDAO were replaced with polar serine or threonine residues. Binding to heparin and heparan sulfate, cellular internalization and clearance in rodents were examined.
Recombinant hDAO is rapidly cleared from the circulation in rats and mice. After mutation of the heparin-binding motif, binding to heparin and heparan sulfate was strongly reduced. The double mutant rhDAO-R568S/R571T showed minimal cellular uptake. The short α-distribution half-life of the wildtype protein was eliminated, and the clearance was significantly reduced in rodents.
The successful decrease in plasma clearance of rhDAO by mutations of the heparin-binding motif with unchanged histamine-degrading activity represents the first step towards the development of rhDAO as a first-in-class biopharmaceutical to effectively treat diseases characterized by excessive histamine concentrations in plasma and tissues.
Austrian Science Fund (FWF) Hertha Firnberg program grant T1135 (EG); Sigrid Juselius Foundation, Medicinska Understödsförening Liv och Hälsa rft (TAS and SeV).
© 2021, Gludovacz et al.

TPC1 deficiency or blockade augments systemic anaphylaxis and mast cell activity.

In Proceedings of the National Academy of Sciences of the United States of America on 28 July 2020 by Arlt, E., Fraticelli, M., et al.

Mast cells and basophils are main drivers of allergic reactions and anaphylaxis, for which prevalence is rapidly increasing. Activation of these cells leads to a tightly controlled release of inflammatory mediators stored in secretory granules. The release of these granules is dependent on intracellular calcium (Ca2+) signals. Ca2+ release from endolysosomal compartments is mediated via intracellular cation channels, such as two-pore channel (TPC) proteins. Here, we uncover a mechanism for how TPC1 regulates Ca2+ homeostasis and exocytosis in mast cells in vivo and ex vivo. Notably, in vivo TPC1 deficiency in mice leads to enhanced passive systemic anaphylaxis, reflected by increased drop in body temperature, most likely due to accelerated histamine-induced vasodilation. Ex vivo, mast cell-mediated histamine release and degranulation was augmented upon TPC1 inhibition, although mast cell numbers and size were diminished. Our results indicate an essential role of TPC1 in endolysosomal Ca2+ uptake and filling of endoplasmic reticulum Ca2+ stores, thereby regulating exocytosis in mast cells. Thus, pharmacological modulation of TPC1 might blaze a trail to develop new drugs against mast cell-related diseases, including allergic hypersensitivity.
Copyright © 2020 the Author(s). Published by PNAS.

View this product on CiteAb