Product citations: 3

Powered by

An overreactive inflammatory response and coagulopathy are observed in patients with severe form of COVID-19. Since increased levels of D-dimer (DD) are associated with coagulopathy in COVID-19, we explored whether DD contributes to the aberrant cytokine responses. Here we show that treatment of healthy human monocytes with DD induced a dose dependent increase in production of pyrogenic mediator, Prostaglandin E2 (PGE2) and inflammatory cytokines, IL-6 and IL-8. The DD-induced PGE2 and inflammatory cytokines were enhanced significantly by co-treatment with immune complexes (IC) of SARS CoV-2 recombinant S protein or of pseudovirus containing SARS CoV-2 S protein (PVCoV-2) coated with spike-specific chimeric monoclonal antibody (MAb) containing mouse variable and human Fc regions. The production of PGE2 and cytokines in monocytes activated with DD and ICs was sensitive to the inhibitors of β2 integrin and FcγRIIa, and to the inhibitors of calcium signaling, Mitogen-Activated Protein Kinase (MAPK) pathway, and tyrosine-protein kinase. Importantly, strong increase in PGE2 and in IL-6/IL-8/IL-1β cytokines was observed in monocytes activated with DD in the presence of IC of PVCoV-2 coated with plasma from hospitalized COVID-19 patients but not from healthy donors. The IC of PVCoV-2 with convalescent plasma induced much lower levels of PGE2 and cytokines compared with plasma from hospitalized COVID-19 patients. PGE2 and IL-6/IL-8 cytokines produced in monocytes activated with plasma-containing IC, correlated well with the levels of spike binding antibodies and not with neutralizing antibody titers. Our study suggests that a combination of high levels of DD and high titers of spike-binding antibodies that can form IC with SARS CoV-2 viral particles might accelerate the inflammatory status of lung infiltrating monocytes leading to increased lung pathology in patients with severe form of COVID-19.

Acetylsalicylic acid is a globally used non-steroidal anti-inflammatory drug (NSAID) with diverse pharmacological properties, although its mechanism of immune regulation during inflammation (especially at in vivo relevant doses) remains largely speculative. Given the increase in clinical perspective of Acetylsalicylic acid in various diseases and cancer prevention, this study aimed to investigate the immunomodulatory role of physiological Acetylsalicylic acid concentrations (0.005, 0.02 and 0.2 mg/ml) in a human whole blood of infection-induced inflammation. We describe a simple, highly reliable whole blood assay using an array of toll-like receptor (TLR) ligands 1-9 in order to systematically explore the immunomodulatory activity of Acetylsalicylic acid plasma concentrations in physiologically relevant conditions. Release of inflammatory cytokines and production of prostaglandin E2 (PGE2) were determined directly in plasma supernatant. Experiments demonstrate for the first time that plasma concentrations of Acetylsalicylic acid significantly increased TLR ligand-triggered IL-1β, IL-10, and IL-6 production in a dose-dependent manner. In contrast, indomethacin did not exhibit this capacity, whereas cyclooxygenase (COX)-2 selective NSAID, celecoxib, induced a similar pattern like Acetylsalicylic acid, suggesting a possible relevance of COX-2. Accordingly, we found that exogenous addition of COX downstream product, PGE2, attenuates the TLR ligand-mediated cytokine secretion by augmenting production of anti-inflammatory cytokines and inhibiting release of pro-inflammatory cytokines. Low PGE2 levels were at least involved in the enhanced IL-1β production by Acetylsalicylic acid.

4'-Hydroxywogonin (4'-HW), a flavonoid, has been isolated from various plants and shown to inhibit NO production in macrophages. However, the molecular mechanisms and its in vivo activity have not been determined. Our study aimed to investigate the mechanisms underlying the anti-inflammatory effects of 4'-HW in vitro and in vivo. We showed that 4'-HW potently reduced the expression levels of COX-2 and iNOS as well as their products, prostaglandin E2 (PGE2) and nitric oxide (NO) respectively, in LPS-stimulated RAW 264.7 macrophages. 4'-HW also suppressed LPS-induced pro-inflammatory cytokines at mRNA and protein levels. Moreover, 4'-HW blocked the interaction of TAK1 and TAB1 in LPS-stimulated RAW 264.7 macrophages, resulting in an inhibition of the TAK1/IKK/NF-κB signaling pathway. Furthermore, 4'-HW also reduced the phosphorylation of MAPKs and PI3/Akt signaling pathways in LPS-stimulated RAW 264.7 macrophages. 4'-HW was also significantly decreased the intracellular reactive oxygen species (ROS) level. The effect of 4'-HW was confirmed in vivo. 4'-HW exhibited potent protective effect against LPS-induced ALI in mice. These findings indicate that 4'-HW suppresses the LPS-induced response in vitro and in vivo. It is likely that the inhibition of the TAK1/IKK/NF-κB, MAPKs and PI3/AKT signaling pathways contribute to the anti-inflammatory effects of 4'-HW. Our study suggests that 4'-HW may be an important functional constituent in the plants and has the potential value to be developed as a novel anti-inflammatory agent.

View this product on CiteAb