Product Citations: 18

Quantitation of mHLA-DR and nCD64 by Flow Cytometry to Study Dysregulated Host Response: The Use of QuantiBRITE™ PE Beads and Its Stability.

In Applied Biochemistry and Biotechnology on 1 September 2023 by Sanju, S., Jain, P., et al.

Quantitation of mHLA-DR and nCD64 is useful in understanding the dysregulated host response. The down regulation of HLA-DR expression on the circulating monocytes (mHLA-DR) is associated with anti-inflammatory response, and an increased expression of CD64 on neutrophil surface (nCD64) is associated with pro-inflammatory response. Quantitation of these antigen expression using beads (QuantiBRITE™ PE) is a precision technique. These beads are reported to be stable for 24 h after reconstitution. We report the results of our investigation examining the stability of QuantiBRITE PE beads over a period of 4-week post-reconstitution. The data suggest that reconstituted QuantiBRITE PE beads, if stored in dark at 2-8 °C, can be effectively used for up to 2 weeks for determining nCD64 and mHLA-DR antibody bound per cell (ABC) values.
© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

  • FC/FACS
  • Homo sapiens (Human)
  • Biochemistry and Molecular biology

Human Platelet-Rich Plasma Regulates Canine Mesenchymal Stem Cell Migration through Aquaporins.

In Stem Cells International on 24 May 2023 by Parascandolo, A., Di Tolla, M. F., et al.

Platelet products are commonly used in regenerative medicine due to their effects on the acceleration and promotion of wound healing, reduction of bleeding, synthesis of new connective tissue, and revascularization. Furthermore, a novel approach for the treatment of damaged tissues, following trauma or other pathological damages, is represented by the use of mesenchymal stem cells (MSCs). In dogs, both platelet-rich plasma (PRP) and MSCs have been suggested to be promising options for subacute skin wounds. However, the collection of canine PRP is not always feasible. In this study, we investigated the effect of human PRP (hPRP) on canine MSCs (cMSCs). We isolated cMSCs and observed that hPRP did not modify the expression levels of the primary class of major histocompatibility complex genes. However, hPRP was able to increase cMSC viability and migration by at least 1.5-fold. hPRP treatment enhanced both Aquaporin (AQP) 1 and AQP5 protein levels, and their inhibition by tetraethylammonium chloride led to a reduction of PRP-induced migration of cMSCs. In conclusion, we have provided evidence that hPRP supports cMSC survival and may promote cell migration, at least through AQP activation. Thus, hPRP may be useful in canine tissue regeneration and repair, placing as a promising tool for veterinary therapeutic approaches.
Copyright © 2023 Alessia Parascandolo et al.

  • FC/FACS
  • Stem Cells and Developmental Biology
  • Veterinary Research

Adiposity and diabetes affect breast cancer (BC) progression. We addressed whether glucose may affect the interaction between mammary adipose tissue-derived mesenchymal stromal/stem cells (MAT-MSCs) and BC cells. Two-dimensional co-cultures and spheroids were established in 25 mM or 5.5 mM glucose (High Glucose-HG or Low Glucose-LG) by using MAT-MSCs and MCF7 or MDA-MB231 BC cells. Gene expression was measured by qPCR, while protein levels were measured by cytofluorimetry and ELISA. CD44high/CD24low BC stem-like sub-population was quantified by cytofluorimetry. An in vivo zebrafish model was assessed by injecting spheroid-derived labeled cells. MAT-MSCs co-cultured with BC cells showed an inflammatory/senescent phenotype with increased abundance of IL-6, IL-8, VEGF and p16INK4a, accompanied by altered levels of CDKN2A and LMNB1. BC cells reduced multipotency and increased fibrotic features modulating OCT4, SOX2, NANOG, αSMA and FAP in MAT-MSCs. Of note, these co-culture-mediated changes in MAT-MSCs were partially reverted in LG. Only in HG, MAT-MSCs increased CD44high/CD24low MCF7 sub-population and promoted their ability to form mammospheres. Injection in zebrafish embryos of HG spheroid-derived MCF7 and MAT-MSCs was followed by a significant cellular migration and caudal dissemination. Thus, MAT-MSCs enhance the aggressiveness of BC cells in a HG environment.

  • Cancer Research
  • Stem Cells and Developmental Biology

COVID-19 is arguably the biggest health crisis the world has faced in the 21st century. Therefore, two of the polyherbal formulations, Infuza and Kulzam were assessed for the prevention of COVID-19 infection as a repurposed medication. Four hundred seven high-risk subjects were recruited in the present open-label randomized controlled clinical trial for eligibility. After assessment for eligibility, remaining 251 subjects were randomized to the test and control groups. Further, 52 high-risk subjects in Infuza, 51 in Kulzam, 51 in Infuza & Kulzam and 53 in control group completed the 14 days of intervention/assessment. The phenotyping of lymphocytes at baseline (0 day) and after 14 days of treatment was carried out by flow cytometry assays. A total of 15.09% high-risk subjects in control group turned positive as compared to only 7.69% in Infuza, 3.92% in Kulzam and 1.96% in Infuza & Kulzam groups. The rate of conversion to COVID-19 infection in Infuza & Kulzam group was minimal and statistically significant as compared to control group (p0.017). No significant changes in phenotype of lymphocytes (T, B, NK cells), absolute lymphocyte count and cytokine levels were found in study groups. However, there was a decreasing trend of hs-CRP level in high-risk subjects after intervention of polyherbal formulations for 14 days. The combination of Infuza and Kulzam may synergistically prevent COVID-19 infection in high-risk subjects of COVID-19.
© 2022 John Wiley & Sons Ltd.

  • FC/FACS
  • Homo sapiens (Human)
  • COVID-19
  • Immunology and Microbiology

C/EBPα confers dependence to fatty acid anabolic pathways and vulnerability to lipid oxidative stress in FLT3-mutant leukemia

Preprint on BioRxiv : the Preprint Server for Biology on 16 April 2022 by Sabatier, M., Birsen, R., et al.

h4>ABSTRACT/h4> While transcription factor C/AAT-enhancer binding protein α (C/EBPα) is critical for normal and leukemic differentiation, its role on cell and metabolic homeostasis is largely unknown in cancer. Here, multi-omics analyses uncovered a coordinated activation of C/EBPα and Fms-like tyrosine kinase 3 (FLT3) that increased lipid anabolism in vivo and in patients with FLT3 -mutant acute myeloid leukemia (AML). Mechanistically, C/EBPα regulated FASN-SCD axis to promote fatty acid (FA) biosynthesis and desaturation. We further demonstrated that FLT3 or C/EBPα inactivation decreased mono-unsaturated FAs incorporation to membrane phospholipids through SCD downregulation. Consequently, SCD inhibition enhanced susceptibility to lipid redox stress. Moreover, this C/EBPα-dependent adaptation of FA homeostasis was exploited by combining FLT3 and glutathione peroxidase 4 (GPX4) inhibition to trigger lipid oxidative stress, enhancing ferroptotic death of FLT3 -mutant AML cells. Altogether, our study reveals a C/EBPα function in lipid homeostasis and adaptation to redox stress, and a previously unreported vulnerability of FLT3-mutant AML with promising therapeutic application. h4>SIGNIFICANCE/h4> The transcription factor C/EBPα is as a master regulator of normal and leukemic myeloid differentiation. Here, we discovered that C/EBPα regulates fatty acid biosynthesis and metabolic adaptation to redox imbalance in leukemic cells. This confers a vulnerability to lipid oxidative stress to FLT3 -mutant cells and supports novel therapeutic opportunities for patients.

  • Homo sapiens (Human)
  • Cancer Research
View this product on CiteAb