Product Citations: 8

High-throughput compound screen reveals mTOR inhibitors as potential therapeutics to reduce (auto)antibody production by human plasma cells.

In European Journal of Immunology on 1 January 2020 by Tuijnenburg, P., aan de Kerk, D. J., et al.

Antibody production by the B cell compartment is a crucial part of the adaptive immune response. Dysregulated antibody production in the form of autoantibodies can cause autoimmune disease. To date, B-cell depletion with anti-CD20 antibodies is commonly applied in autoimmunity, but pre-existing plasma cells are not eliminated in this way. Alternative ways of more selective inhibition of antibody production would add to the treatment of these autoimmune diseases. To explore novel therapeutic targets in signaling pathways essential for plasmablast formation and/or immunoglobulin production, we performed a compound screen of almost 200 protein kinase inhibitors in a robust B-cell differentiation culture system. This study yielded 35 small cell-permeable compounds with a reproducible inhibitory effect on B-cell activation and plasmablast formation, among which was the clinically applied mammalian target of rapamycin (mTOR) inhibitor rapamycin. Two additional compounds targeting the phosphoinositide 3-kinase-AKT-mTOR pathway (BKM120 and WYE-354) did not affect proliferation and plasmablast formation, but specifically reduced the immunoglobulin production. With this compound screen we successfully applied a method to investigate therapeutic targets for B-cell differentiation and identified compounds in the phosphoinositide 3-kinase-AKT-mTOR pathway that could specifically inhibit immunoglobulin production only. These drugs may well be explored to be of value in current B-cell-depleting treatment regimens in autoimmune disorders.
© 2019 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • FC/FACS
  • Homo sapiens (Human)
  • Immunology and Microbiology

BOB.1 controls memory B-cell fate in the germinal center reaction.

In Journal of Autoimmunity on 1 July 2019 by Levels, M. J., Fehres, C. M., et al.

During T cell-dependent (TD) germinal center (GC) responses, naïve B cells are instructed to differentiate towards GC B cells (GCBC), high-affinity long-lived plasma cells (LLPC) or memory B cells (Bmem). Alterations in the B cell-fate choice could contribute to immune dysregulation leading to the loss of self-tolerance and the initiation of autoimmune disease. Here we show that mRNA levels of the transcription regulator BOB.1 are increased in the lymph node compartment of patients with rheumatoid arthritis (RA), a prototypical autoimmune disease caused by the loss of immunological tolerance. Investigating to what extent levels of BOB.1 impact B cells during TD immune responses we found that BOB.1 has a crucial role in determining the B cell-fate decision. High BOB.1 levels promote the generation of cells with phenotypic and functional characteristics of Bmem. Mechanistically, overexpression of BOB.1 drives ABF1 and suppresses BCL6, favouring Bmem over LLPC or recycling GCBC. Low levels of BOB.1 are sufficient for LLPC but not for Bmem differentiation. Our findings demonstrate a novel role for BOB.1 in B cells during TD GC responses and suggest that its dysregulation may contribute to the pathogenesis of RA by disturbing the B cell-fate determination.
Copyright © 2019 The Authors. Published by Elsevier Ltd.. All rights reserved.

  • Immunology and Microbiology
  • Neuroscience
  • Stem Cells and Developmental Biology

Adiponectin and Its Receptors Are Differentially Expressed in Human Tissues and Cell Lines of Distinct Origin.

In Obesity Facts on 6 December 2017 by Jasinski-Bergner, S., Büttner, M., et al.

Adiponectin is secreted by adipose tissue and exerts high abundance and an anti-inflammatory potential. However, only little information exists about the expression profiles of adiponectin and its recently identified receptor CDH13 in non-tumorous human tissues and their association to clinical parameters.
The expression levels of adiponectin and CDH13 were analyzed in heart, liver, kidney, spleen, skin, blood vessels, peripheral nerve and bone marrow of 21 human body donors, in 12 human cell lines, and in purified immune effector cell populations of healthy blood donors by immunohistochemistry, Western-blot, and semi-quantitative PCR. The obtained results were then correlated to clinical parameters, including age, sex and known diseases like cardiovascular and renal diseases.
Adiponectin expression in renal corpuscles was significantly higher in humans with known renal diseases. A coordinated expression of adiponectin and CDH13 was observed in the myocard. High levels of adiponectin could be detected in the bone marrow, in certain lymphoid tumor cell lines and in purified immune effector cell populations of healthy donors, in particular in cytotoxic T cells.
For the first time, the expression profiles of adiponectin and CDH13 are analyzed in many human tissues in correlation to each other and to clinical parameters.
© 2017 The Author(s) Published by S. Karger GmbH, Freiburg.

Selection and maturation of B cells into plasma cells producing high-affinity antibodies occur in germinal centers (GC). GCs form transiently in secondary lymphoid organs upon antigen challenge, and the GC reaction is a highly regulated process. TGF-β is a potent negative regulator, but the influence of other family members including bone morphogenetic proteins (BMPs) is less known. Studies of human peripheral blood B lymphocytes showed that BMP-6 suppressed plasmablast differentiation, whereas BMP-7 induced apoptosis. Here, we show that human naïve and GC B cells had a strikingly different receptor expression pattern. GC B cells expressed high levels of BMP type I receptor but low levels of type II receptors, whereas naïve B cells had the opposite pattern. Furthermore, GC B cells had elevated levels of downstream signaling components SMAD1 and SMAD5, but reduced levels of the inhibitory SMAD7. Functional assays of GC B cells revealed that BMP-7 suppressed the viability-promoting effect of CD40L and IL-21, but had no effect on CD40L- and IL-21-induced differentiation into plasmablasts. BMP-7-induced apoptosis was counteracted by a selective TGF-β type I receptor (ALK4/5/7) inhibitor, but not by a selective BMP receptor type I inhibitor. Furthermore, overexpression of truncated ALK5 in a B-cell line counteracted BMP-7-induced apoptosis, whereas overexpression of truncated ALK4 had no effect. BMP-7 mRNA and protein was readily detected in tonsillar B cells, indicating a physiological relevance of the study. Altogether, we identified BMP-7 as a negative regulator of GC B-cell survival. The effect was counteracted by truncated ALK5, suggesting greater complexity in regulating BMP-7 signaling than previously believed.

  • Immunology and Microbiology

High-dimensional assessment of B-cell responses to quadrivalent meningococcal conjugate and plain polysaccharide vaccine.

In Genome Medicine on 30 January 2017 by O'Connor, D., Clutterbuck, E. A., et al.

Neisseria meningitidis is a globally important cause of meningitis and septicaemia. Twelve capsular groups of meningococci are known, and quadrivalent vaccines against four of these (A, C, W and Y) are available as plain-polysaccharide and protein-polysaccharide conjugate vaccines. Here we apply contemporary methods to describe B-cell responses to meningococcal polysaccharide and conjugate vaccines.
Twenty adults were randomly assigned to receive either a meningococcal plain-polysaccharide or conjugate vaccine; one month later all received the conjugate vaccine. Blood samples were taken pre-vaccination and 7, 21 and 28 days after vaccination; B-cell responses were assessed by ELISpot, serum bactericidal assay, flow cytometry and gene expression microarray.
Seven days after an initial dose of either vaccine, a gene expression signature characteristic of plasmablasts was detectable. The frequency of newly generated plasma cells (CXCR3+HLA-DR+) and the expression of transcripts derived from IGKC and IGHG2 correlated with immunogenicity. Notably, using an independent dataset, the expression of glucosamine (N-acetyl)-6-sulfatase was found to reproducibly correlate with the magnitude of immune response. Transcriptomic and flow cytometric data revealed depletion of switched memory B cells following plain-polysaccharide vaccine.
These data describe distinct gene signatures associated with the production of high-avidity antibody and a plain-polysaccharide-specific signature, possibly linked to polysaccharide-induced hyporesponsiveness.

  • FC/FACS
  • Homo sapiens (Human)
  • Immunology and Microbiology
View this product on CiteAb