Product Citations: 4

Kombo knife combined with sorafenib in liver cancer treatment: Efficacy and safety under immune function influence.

In World Journal of Gastrointestinal Oncology on 15 July 2024 by Cao, Y., Li, P. P., et al.

In the quest to manage hepatocellular carcinoma (HCC), the focus has shifted to a more holistic approach encompassing both data analytics and innovative treatments. Analyzing rich data resources, such as the cancer genome atlas (TCGA), and examining progressive therapies can potentially reshape the trajectory of HCC treatment.
To elucidate the immunological genes and the underlying mechanism of the combined Kombo knife and sorafenib regimen for HCC by analyzing data from TCGA and machine learning data.
Immune attributes were evaluated via TCGA's postablation HCC RNA sequencing data. Using weighted gene coexpression network analysis and machine learning, we identified genes with high prognostic value. The therapeutic landscape and safety metrics of the integrated treatment were critically evaluated across cellular and animal models.
Immune genes-specifically, peptidylprolyl isomerase A and solute carrier family 29 member 3-emerged as significant prognostic markers. Enhanced therapeutic outcomes, such as prolonged progression-free survival and an elevated overall response rate, characterize the combined approach, with peripheral blood mononuclear cells displaying potent effects on HCC dynamics.
The combination of Kombo knife with sorafenib is an innovative HCC treatment modality anchored in immune-centric strategies.
©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

  • Cancer Research
  • Immunology and Microbiology

Comparative analysis of Bcl-2 family protein overexpression in CAR T cells alone and in combination with BH3 mimetics.

In Science Translational Medicine on 5 June 2024 by Korell, F., Olson, M. L., et al.

Approximately 50% of patients with hematologic malignancies relapse after chimeric antigen receptor (CAR) T cell treatment; mechanisms of failure include loss of CAR T persistence and tumor resistance to apoptosis. We hypothesized that both of these challenges could potentially be overcome by overexpressing one or more of the Bcl-2 family proteins in CAR T cells to reduce their susceptibility to apoptosis, both alone and in the presence of BH3 mimetics, which can be used to activate apoptotic machinery in malignant cells. We comprehensively investigated overexpression of different Bcl-2 family proteins in CAR T cells with different signaling domains as well as in different tumor types. We found that Bcl-xL and Bcl-2 overexpression in CAR T cells bearing a 4-1BB costimulatory domain resulted in increased expansion and antitumor activity, reduced exhaustion, and decreased apoptotic priming. In addition, CAR T cells expressing either Bcl-xL or a venetoclax-resistant Bcl-2 variant led to enhanced antitumor efficacy and survival in murine xenograft models of lymphoma and leukemia in the presence or absence of the BH3 mimetic venetoclax, a clinically approved BH3 mimetic. In this setting, Bcl-xL overexpression had stronger effects than overexpression of Bcl-2 or the Bcl-2(G101V) variant. These findings suggest that CAR T cells could be optimally engineered by overexpressing Bcl-xL to enhance their persistence while opening a therapeutic window for combination with BH3 mimetics to prime tumors for apoptosis.

  • Immunology and Microbiology

Genetic retargeting of E3 ligases to enhance CAR T cell therapy.

In Cell Chemical Biology on 15 February 2024 by Lane, I. C., Kembuan, G., et al.

Chimeric antigen receptor (CAR) T cell therapies are medical breakthroughs in cancer treatment. However, treatment failure is often caused by CAR T cell dysfunction. Additional approaches are needed to overcome inhibitory signals that limit anti-tumor potency. Here, we developed bifunctional fusion "degrader" proteins that bridge one or more target proteins and an E3 ligase complex to enforce target ubiquitination and degradation. Conditional degradation strategies were developed using inducible degrader transgene expression or small molecule-dependent E3 recruitment. We further engineered degraders to block SMAD-dependent TGFβ signaling using a domain from the SARA protein to target both SMAD2 and SMAD3. SMAD degrader CAR T cells were less susceptible to suppression by TGFβ and demonstrated enhanced anti-tumor potency in vivo. These results demonstrate a clinically suitable synthetic biology platform to reprogram E3 ligase target specificity for conditional, multi-specific endogenous protein degradation, with promising applications including enhancing the potency of CAR T cell therapy.
Copyright © 2023 Elsevier Ltd. All rights reserved.

  • Genetics
  • Immunology and Microbiology

Distinct cellular dynamics associated with response to CAR-T therapy for refractory B cell lymphoma.

In Nature Medicine on 1 September 2022 by Haradhvala, N. J., Leick, M. B., et al.

Chimeric antigen receptor (CAR)-T cell therapy has revolutionized the treatment of hematologic malignancies. Approximately half of patients with refractory large B cell lymphomas achieve durable responses from CD19-targeting CAR-T treatment; however, failure mechanisms are identified in only a fraction of cases. To gain new insights into the basis of clinical response, we performed single-cell transcriptome sequencing of 105 pretreatment and post-treatment peripheral blood mononuclear cell samples, and infusion products collected from 32 individuals with large B cell lymphoma treated with either of two CD19 CAR-T products: axicabtagene ciloleucel (axi-cel) or tisagenlecleucel (tisa-cel). Expansion of proliferative memory-like CD8 clones was a hallmark of tisa-cel response, whereas axi-cel responders displayed more heterogeneous populations. Elevations in CAR-T regulatory cells among nonresponders to axi-cel were detected, and these populations were capable of suppressing conventional CAR-T cell expansion and driving late relapses in an in vivo model. Our analyses reveal the temporal dynamics of effective responses to CAR-T therapy, the distinct molecular phenotypes of CAR-T cells with differing designs, and the capacity for even small increases in CAR-T regulatory cells to drive relapse.
© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.

  • FC/FACS
  • Homo sapiens (Human)
  • Cancer Research
  • Immunology and Microbiology
View this product on CiteAb