Product citations: 3

Powered by

Extensive knowledge has been gained on the transcription network controlled by ERα, however, the mechanism underlying ESR1 (encoding ERα) expression is less understood. We recently discovered that the Hippo pathway is required for the proper expression of ESR1. YAP/TAZ are transcription coactivators that are phosphorylated and inhibited by the Hippo pathway kinase LATS. Here we delineated the molecular mechanisms underlying ESR1 transcription repression by the Hippo pathway. Mechanistically, YAP binds to TEAD to increase local chromatin accessibility to stimulate transcription of nearby genes. Among the YAP target genes, Vestigial-Like Protein 3 (VGLL3) competes with YAP/TAZ for binding to TEAD transcription factor and recruits the NCOR2/SMRT repressor to the super-enhancer of ESR1 gene, leading to epigenetic alteration and transcriptional silencing. We developed a potent LATS inhibitor VT02956. Targeting the Hippo pathway by VT02956 represses ESR1 expression and inhibits the growth of ER+ breast cancer cells as well as patient-derived tumour organoids. Moreover, histone deacetylase inhibitors, such as Entinostat, induce VGLL3 expression to inhibit ER+ breast cancer cells. Our study suggests LATS as unexpected cancer therapeutic targets, especially for endocrine-resistant breast cancers.
© 2022. The Author(s).

Small-molecule inhibition of Lats kinases may promote Yap-dependent proliferation in postmitotic mammalian tissues.

In Nature Communications on 25 May 2021 by Kastan, N., Gnedeva, K., et al.

Hippo signaling is an evolutionarily conserved pathway that restricts growth and regeneration predominantly by suppressing the activity of the transcriptional coactivator Yap. Using a high-throughput phenotypic screen, we identified a potent and non-toxic activator of Yap. In vitro kinase assays show that the compound acts as an ATP-competitive inhibitor of Lats kinases-the core enzymes in Hippo signaling. The substance prevents Yap phosphorylation and induces proliferation of supporting cells in the murine inner ear, murine cardiomyocytes, and human Müller glia in retinal organoids. RNA sequencing indicates that the inhibitor reversibly activates the expression of transcriptional Yap targets: upon withdrawal, a subset of supporting-cell progeny exits the cell cycle and upregulates genes characteristic of sensory hair cells. Our results suggest that the pharmacological inhibition of Lats kinases may promote initial stages of the proliferative regeneration of hair cells, a process thought to be permanently suppressed in the adult mammalian inner ear.

Direct targeting of Gαq and Gα11 oncoproteins in cancer cells.

In Science Signaling on 19 March 2019 by Annala, S., Feng, X., et al.

Somatic gain-of-function mutations of GNAQ and GNA11, which encode α subunits of heterotrimeric Gαq/11 proteins, occur in about 85% of cases of uveal melanoma (UM), the most common cancer of the adult eye. Molecular therapies to directly target these oncoproteins are lacking, and current treatment options rely on radiation, surgery, or inhibition of effector molecules downstream of these G proteins. A hallmark feature of oncogenic Gαq/11 proteins is their reduced intrinsic rate of hydrolysis of guanosine triphosphate (GTP), which results in their accumulation in the GTP-bound, active state. Here, we report that the cyclic depsipeptide FR900359 (FR) directly interacted with GTPase-deficient Gαq/11 proteins and preferentially inhibited mitogenic ERK signaling rather than canonical phospholipase Cβ (PLCβ) signaling driven by these oncogenes. Thereby, FR suppressed the proliferation of melanoma cells in culture and inhibited the growth of Gαq-driven UM mouse xenografts in vivo. In contrast, FR did not affect tumor growth when xenografts carried mutated B-RafV600E as the oncogenic driver. Because FR enabled suppression of malignant traits in cancer cells that are driven by activating mutations at codon 209 in Gαq/11 proteins, we envision that similar approaches could be taken to blunt the signaling of non-Gαq/11 G proteins.
Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

View this product on CiteAb