Product Citations: 3

Dysregulated lipid metabolism networks modulate T-cell function in people with relapsing-remitting multiple sclerosis.

In Clinical and Experimental Immunology on 12 July 2024 by Martin-Gutierrez, L., Waddington, K. E., et al.

Altered cholesterol, oxysterol, sphingolipid, and fatty acid concentrations are reported in blood, cerebrospinal fluid, and brain tissue of people with relapsing-remitting multiple sclerosis (RRMS) and are linked to disease progression and treatment responses. CD4 + T cells are pathogenic in RRMS, and defective T-cell function could be mediated in part by liver X receptors (LXRs)-nuclear receptors that regulate lipid homeostasis and immunity. RNA-sequencing and pathway analysis identified that genes within the 'lipid metabolism' and 'signalling of nuclear receptors' pathways were dysregulated in CD4 + T cells isolated from RRMS patients compared with healthy donors. While LXRB and genes associated with cholesterol metabolism were upregulated, other T-cell LXR-target genes, including genes involved in cellular lipid uptake (inducible degrader of the LDL receptor, IDOL), and the rate-limiting enzyme for glycosphingolipid biosynthesis (UDP-glucosylceramide synthase, UGCG) were downregulated in T cells from patients with RRMS compared to healthy donors. Correspondingly, plasma membrane glycosphingolipids were reduced, and cholesterol levels increased in RRMS CD4 + T cells, an effect partially recapitulated in healthy T cells by in vitro culture with T-cell receptor stimulation in the presence of serum from RRMS patients. Notably, stimulation with LXR-agonist GW3965 normalized membrane cholesterol levels, and reduced proliferation and IL17 cytokine production in RRMS CD4 + T-cells. Thus, LXR-mediated lipid metabolism pathways were dysregulated in T cells from patients with RRMS and could contribute to RRMS pathogenesis. Therapies that modify lipid metabolism could help restore immune cell function.
© The Author(s) 2024. Published by Oxford University Press on behalf of the British Society for Immunology.

  • Biochemistry and Molecular biology
  • Cell Biology
  • Immunology and Microbiology

Reduced monocyte proportions and responsiveness in convalescent COVID-19 patients.

In Frontiers in Immunology on 22 January 2024 by Ravkov, E. V., Williams, E. S. C. P., et al.

The clinical manifestations of acute severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection and coronavirus disease 2019 (COVID-19) suggest a dysregulation of the host immune response that leads to inflammation, thrombosis, and organ dysfunction. It is less clear whether these dysregulated processes persist during the convalescent phase of disease or during long COVID. We sought to examine the effects of SARS-CoV-2 infection on the proportions of classical, intermediate, and nonclassical monocytes, their activation status, and their functional properties in convalescent COVID-19 patients.
Peripheral blood mononuclear cells (PBMCs) from convalescent COVID-19 patients and uninfected controls were analyzed by multiparameter flow cytometry to determine relative percentages of total monocytes and monocyte subsets. The expression of activation markers and proinflammatory cytokines in response to LPS treatment were measured by flow cytometry and ELISA, respectively.
We found that the percentage of total monocytes was decreased in convalescent COVID-19 patients compared to uninfected controls. This was due to decreased intermediate and non-classical monocytes. Classical monocytes from convalescent COVID-19 patients demonstrated a decrease in activation markers, such as CD56, in response to stimulation with bacterial lipopolysaccharide (LPS). In addition, classical monocytes from convalescent COVID-19 patients showed decreased expression of CD142 (tissue factor), which can initiate the extrinsic coagulation cascade, in response to LPS stimulation. Finally, we found that monocytes from convalescent COVID-19 patients produced less TNF-α and IL-6 in response to LPS stimulation, than those from uninfected controls.
SARS-CoV-2 infection exhibits a clear effect on the relative proportions of monocyte subsets, the activation status of classical monocytes, and proinflammatory cytokine production that persists during the convalescent phase of disease.
Copyright © 2024 Ravkov, Williams, Elgort, Barker, Planelles, Spivak, Delgado, Lin and Hanley.

  • FC/FACS
  • COVID-19
  • Immunology and Microbiology

Prognostic Value of Tie2-Expressing Monocytes in Chronic Lymphocytic Leukemia Patients.

In Cancers on 5 June 2021 by Woś, J., Chocholska, S., et al.

Tie2-expressing monocytes (TEMs) are associated with tumor progression and metastasis. This unique subset of monocytes has been identified as a potential prognostic marker in several solid tumors. However, TEMs remain poorly characterized in hematological cancers, including chronic lymphocytic leukemia (CLL). This study analyzed, for the first time, the clinical significance of TEM population in CLL patients. Flow cytometry analysis of TEMs (defined as CD14+CD16+Tie2+ cells) was performed at the time of diagnosis on peripheral blood mononuclear cells from 104 untreated CLL patients. Our results revealed an expansion of circulating TEM in CLL patients. These monocytes express high levels of VEGF and suppressive IL-10. A high percentage of TEM was associated closely with unfavorable prognostic markers (ZAP-70, CD38, 17p and 11q deletion, and IGHV mutational status). Moreover, increased percentages of circulating TEMs were significantly higher in patients not responding to the first-line therapy as compared to responding patients, suggesting its potential predictive value. High TEM percentage was also correlated with shorter overall survival (OS) and shorter time to treatment (TTT). Importantly, based on multivariate Cox regression analysis, TEM percentage was an independent predictor for TTT. Thus, we can suggest the adverse role of TEMs in CLL.

  • FC/FACS
  • Cancer Research
View this product on CiteAb