Product Citations: 4

A tumor cell subpopulation of tumor-initiating cells (TIC) or "cancer stem cells" is associated with therapeutic resistance, as well as both local and distant recurrences. Signal transducer and activator of transcription (STAT) activity is elevated in TICs in claudin-low models of human triple-negative breast cancer, which enables enrichment of TICs using a STAT-responsive reporter. Lineage tracing of TICs as they undergo cell state changes could enable a better understanding of the molecular phenotypes of TIC and uncover strategies to selectively target TICs. In this study, we developed a STAT-responsive lineage-tracing system and used it in conjunction with the original reporter to enrich for cells with enhanced mammosphere-forming potential. This approach was able to detect TICs in some, but not all, basal-like triple-negative breast cancer xenograft models, indicating that STAT signaling has both TIC-related and TIC-independent functions. Single-cell RNA sequencing (RNA-seq) of reporter-tagged xenografts and clinical samples identified a common IFN/STAT1-associated transcriptional state in TICs that was previously linked to inflammation and macrophage differentiation. Surprisingly, most of the identified genes were not present in previously published TIC signatures derived using bulk RNA-seq. Finally, bone marrow stromal cell antigen-2 was identified as a cell surface marker of this state that functionally regulated TIC frequency. These results suggest that TICs may exploit the IFN/STAT1 signaling axis to promote their activity and that targeting this pathway may help eliminate TICs. Significance: Coupling single-cell transcriptomics with tumor-initiating cell enrichment identified IFN response gene expression not previously reported in bulk RNA-sequencing-derived signatures and proposed IFN/STAT1 signaling as a candidate therapeutic target in breast cancer.
©2025 The Authors; Published by the American Association for Cancer Research.

  • Biochemistry and Molecular biology
  • Cancer Research
  • Genetics

Breast cancer is a leading cause of cancer-related death in women worldwide; therefore, there is an urgent need to develop novel therapies and drugs that prolong the survival and improve the quality of life of patients with breast cancer. In the present study, the effects and underlying mechanisms of OTU domain-containing 7B (OTUD7B) knockdown on breast cancer were investigated using MDA-MB-468, MDA-MB-453 and MCF7 cell lines. The results of Cell Counting Kit 8, colony formation and tumor sphere formation experiments showed that OTUD7B knockdown caused a significant decrease in the proliferation and sphere formation ability of MDA-MB-468, MDA-MB-453 and MCF7 cells in vitro. Moreover, western blotting results showed that CD44, EpCAM, SOX2 and Nanog protein levels were significantly decreased following OTUD7B knockdown. These findings indicated that OTUD7B knockdown reduced the proliferation and stemness of breast cancer cells. Co-immunoprecipitation assays demonstrated that OTUD7B interacted with forkhead box protein M1 (FOXM1) and reduced the polyubiquitylation of FOXM1 in breast cancer cells; accordingly, FOXM1 protein levels were significantly decreased by OTUD7B knockdown. Furthermore, the overexpression of FOXM1 reduced the inhibitory effects of OTUD7B knockdown on breast cancer cells. The findings of the present study provide new insights into the oncogenic role of OTUD7B in breast cancer and indicate that OTUD7B may serve as a therapeutic target for breast cancer.
Copyright: © Wang et al.

  • Homo sapiens (Human)
  • Cancer Research

RPE tissues are derived from induced pluripotent stem cells (iPSCs) to model retinal diseases and as a replacement therapy for macular degeneration. Here, we developed a robust and efficient directed differentiation protocol to generate pure RPE cells that form a polarized monolayer. This protocol describes how to set up RPE differentiation and to obtain a pure population that expresses mature RPE markers and forms strong tight junctions. For complete details on the use and execution of this protocol, please refer to Sharma et al., 2019, Sharma et al., 2021 and Miyagishima et al. (2021).

  • Stem Cells and Developmental Biology

Epithelial phenotype restoring drugs suppress macular degeneration phenotypes in an iPSC model.

In Nature Communications on 15 December 2021 by Sharma, R., George, A., et al.

Age-related Macular Degeneration (AMD), a blinding eye disease, is characterized by pathological protein- and lipid-rich drusen deposits underneath the retinal pigment epithelium (RPE) and atrophy of the RPE monolayer in advanced disease stages - leading to photoreceptor cell death and vision loss. Currently, there are no drugs that stop drusen formation or RPE atrophy in AMD. Here we provide an iPSC-RPE AMD model that recapitulates drusen and RPE atrophy. Drusen deposition is dependent on AMD-risk-allele CFH(H/H) and anaphylatoxin triggered alternate complement signaling via the activation of NF-κB and downregulation of autophagy pathways. Through high-throughput screening we identify two drugs, L-745,870, a dopamine receptor antagonist, and aminocaproic acid, a protease inhibitor that reduce drusen deposits and restore RPE epithelial phenotype in anaphylatoxin challenged iPSC-RPE with or without the CFH(H/H) genotype. This comprehensive iPSC-RPE model replicates key AMD phenotypes, provides molecular insight into the role of CFH(H/H) risk-allele in AMD, and discovers two candidate drugs to treat AMD.
© 2021. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.

  • Homo sapiens (Human)
  • Stem Cells and Developmental Biology
View this product on CiteAb