Product Citations: 2

Ectopic Lymphoid Follicle Formation and Human Seasonal Influenza Vaccination Responses Recapitulated in an Organ-on-a-Chip.

In Advanced Science (Weinheim, Baden-Wurttemberg, Germany) on 1 May 2022 by Goyal, G., Prabhala, P., et al.

Lymphoid follicles (LFs) are responsible for generation of adaptive immune responses in secondary lymphoid organs and form ectopically during chronic inflammation. A human model of ectopic LF formation will provide a tool to understand LF development and an alternative to non-human primates for preclinical evaluation of vaccines. Here, it is shown that primary human blood B- and T-lymphocytes autonomously assemble into ectopic LFs when cultured in a 3D extracellular matrix gel within one channel of a two-channel organ-on-a-chip microfluidic device. Superfusion via a parallel channel separated by a microporous membrane is required for LF formation and prevents lymphocyte autoactivation. These germinal center-like LFs contain B cells expressing Activation-Induced Cytidine Deaminase and exhibit plasma cell differentiation upon activation. To explore their utility for seasonal vaccine testing, autologous monocyte-derived dendritic cells are integrated into LF Chips. The human LF chips demonstrate improved antibody responses to split virion influenza vaccination compared to 2D cultures, which are enhanced by a squalene-in-water emulsion adjuvant, and this is accompanied by increases in LF size and number. When inoculated with commercial influenza vaccine, plasma cell formation and production of anti-hemagglutinin IgG are observed, as well as secretion of cytokines similar to vaccinated humans over clinically relevant timescales.
© 2022 The Authors. Advanced Science published by Wiley-VCH GmbH.

  • FC/FACS
  • Homo sapiens (Human)

Lymphoid follicle formation and human vaccination responses recapitulated in an organ-on-a-chip

Preprint on BioRxiv : the Preprint Server for Biology on 16 October 2019 by Goyal, G., Prabhala, P., et al.

h4>ABSTRACT/h4> Lymphoid follicles (LFs) are responsible for generation of adaptive immune responses in secondary lymphoid organs and form ectopically during chronic inflammation. A human model of LF formation would provide a tool to understand LF development and an alternative to non-human primate models for preclinical evaluation of vaccines. Here, we show that primary human blood B- and T-lymphocytes autonomously assemble into ectopic LFs when cultured in a three-dimensional (3D) extracellular matrix gel within an organ-on-a-chip microfluidic device. Dynamic fluid flow is required for LF formation and prevention of lymphocyte autoactivation. These germinal center-like LFs contain B cells expressing Activation-Induced Cytidine Deaminase and exhibit plasma cell (PC) differentiation upon activation. To explore their utility for vaccine testing, autologous monocyte-derived dendritic cells were integrated into LF Chips. The human LF chips demonstrated improved antibody responses to split virion influenza vaccination compared to 2D cultures, which were enhanced by addition of a squalene-in-water emulsion adjuvant, and this was accompanied by increases in LF size and number. When inoculated with commercial influenza vaccine, PC formation and production of anti-hemagglutinin IgG were observed, as well as secretion of cytokines similar to those observed in vaccinated humans over clinically relevant timescales.

  • FC/FACS
View this product on CiteAb